TITLE: DIFFERENTIAL SENSITIVITY THEORY APPLIED TO THE MESA 2D CODE FOR MULTI-MATERIAL PROBLEMS

AUTHOR(S): RUDOLPH J. HENNINGER, XHM
PAUL J. MAUDLIN, T-3
ERIC N. HARSTAD, T-3

SUBMITTED TO: 1995 APS TOPICAL SHOCK COMPRESSION OF CONDENSED MATTER CONFERENCE
SEATTLE, WASHINGTON
AUGUST 13-18, 1995

By acceptance of this article, the publisher recognizes that the U. S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U. S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U. S. Department of Energy.

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DIFFERENTIAL SENSITIVITY THEORY APPLIED TO THE MESA2D CODE FOR MULTI-MATERIAL PROBLEMS

R. J. Henninger, P. J. Maudlin, and E. N. Harstad
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

The technique called Differential Sensitivity Theory (DST) is extended to the multi-component system of equations solved by the MESA2D hydrocode. DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R) and a_i is a calculation input (parameter a_i), then $\partial R/\partial a_i$ is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem all n sensitivities can be obtained by integrating the solutions from only two calculations, a so-called forward (physical) calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. Previous papers have described application of the technique to one-dimensional, single-material problems. This work presents the derivation and solution of the additional adjoint equations for the purpose of computing sensitivities for two-dimensional, multi-component problems. As an example, results for a multi-material flyer plate impact problem featuring an oblique impact are given.

INTRODUCTION

A sensitivity technique (1-3) used successfully in the early eighties (4-6) called Differential Sensitivity Theory (DST) is applied to a system of time-dependent continuum mechanics equations (7). DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculational result of interest (response R) and a is a calculational input (parameter a_i where the subscript is usually not indicated for convenience), then $\partial R/\partial a_i$ is defined as the sensitivity. The advantage of using DST over other sensitivity analysis techniques is mainly economic: for an n-parameter problem all n sensitivities can be obtained by integrating the solutions from only two calculations, a so-called forward (physical) calculation and its corresponding adjoint calculation. This work describes the derivation and solution of the appropriate set of adjoint and sensitivity equations for the ultimate purpose of computing sensitivities for high-rate two-dimensional, multi-component, high deformation problems.

Following Cacuci et. al. (2), consider a system of nonlinear equations written in symbolic form as

$$\mathbf{N}[\mathbf{\bar{y}}(\mathbf{x}), \mathbf{\bar{a}}] = \mathbf{O}(\mathbf{\bar{x}}, \mathbf{\bar{a}}), \tag{1}$$

where $\mathbf{\bar{y}}$ is a dependent variable vector, $\mathbf{\bar{x}}$ is an independent variable vector and $\mathbf{\bar{a}}$ is a parameter vector. Also we assume a response function having the general form:

$$R = \int \int \int \int F(\mathbf{\bar{y}}, \mathbf{\bar{x}}) \, d\bar{t} \, dt = \left\langle F(\mathbf{\bar{y}}, \mathbf{\bar{x}}) \right\rangle \tag{2}$$

where the angle brackets denote space-time integration. If Eq. 1 is differentiated with respect to an arbitrary parameter α, then the resulting system of equations is linear with respect to the new differentiated dependent variable vector, and has the form:

$$L \frac{\partial \mathbf{\bar{y}}}{\partial \alpha} = \mathbf{\bar{s}}, \tag{3}$$
where L is a linear operator operating on the dependent variable vector and \mathbf{S} represents a vector source term that contains the problem parameters differentiated with respect to α. Taking the partial with respect to α of the response (Eq. 2) gives

$$\frac{\partial R}{\partial \alpha} = \int_{\tilde{t}} \int_{\tilde{t}} \frac{\partial F}{\partial \tilde{y}} \cdot \frac{\partial \tilde{y}}{\partial \alpha} \, d\tilde{t} = \left(\frac{\partial F}{\partial \tilde{y}} \cdot \frac{\partial \tilde{y}}{\partial \alpha} \right)$$

Taking the inner product of the left-hand side of Eq. 3 with an arbitrary vector function \tilde{y}^* and invoking a property of inner-product spaces gives

$$\left(\tilde{y}^*, L \frac{\partial \tilde{y}}{\partial \alpha} \right) = \left(\frac{\partial \tilde{y}}{\partial \alpha}, L^* \tilde{y}^* \right) + B \left(\tilde{y}^*, \frac{\partial \tilde{y}}{\partial \alpha} \right),$$

where the function B represents the appropriate boundary terms. This equation can be used to derive a linear adjoint to L (i.e., L^*) that operates on \tilde{y}^* and, when set equal to the differentiated response function from the integrand of Eq. 4, this system of equations can be solved for the so-called adjoint solution:

$$L^* \tilde{y}^* = \frac{\partial F}{\partial \tilde{y}}$$

Substituting Eq. 6 into the right-hand side of Eq. 4, using the inner property given by Eq. 5, and substituting again with Eq. 3 gives

$$\frac{\partial R}{\partial \alpha} = \left(L^* \tilde{y}^*, \frac{\partial \tilde{y}}{\partial \alpha} \right) = \left(\tilde{y}^*, \tilde{s} \right) - B \left(\tilde{y}^*, \frac{\partial \tilde{y}}{\partial \alpha} \right)$$

The last right-hand-side of this equation represents the final integral form of the sensitivity $\frac{\partial R}{\partial \alpha}$.

Practical application of DST requires the solution of the adjoint system represented by Eq. 6 and the sensitivity integration represented by Eq. 7. In our previous paper (8), we presented the forward equations, showed the adjoint equation set, and provided an example for a single material problem. In what follows, we show the additional terms and equations required for multiple material problems and develop the adjoint equations, whose solution results in the sensitivity of the response to initial material interface position. We then show results for a multi-material flyer in an oblique impact situation.

DST WITH INTERFACES

Material interfaces manifest themselves in the equation set as differences in material properties, hence, differences in the equation of state (EOS). In one dimension this results in discontinuous behavior of the pressure. For a material that is between z_v and z_{v+1} the pressure P is given by

$$P = \sum_{v=1}^{N} P_v \left[u(z-z_v) - u(z-z_{v+1}) \right],$$

where u is the unit step function. The "interface equation" for tracking the vth material boundary, which moves at velocity u_z, becomes

$$\dot{z}_v = u_z \delta(z-z_v) dz.$$
where \(\rho \) is the density and \(i \) is the internal energy. Numerical approximation of the delta-functions appearing in the adjoint equation set was implemented using the method of Peskin (9).

Extension of the interface equations to two dimensions is straightforward, has been implemented, and is demonstrated below with an oblique impact example.

OBLIQUE FLYER EXAMPLE

Consider the impact of the five-material flyer shown in Fig. 1 with a rigid boundary. The materials identified in the figure are represented by Mie-Grüneisen EOSs (10). The flyer has an initial velocity of 500 m/s. Upon impact the plate experiences a right-going shock that compresses the materials. Because the interfaces are at an arbitrary angle, the problem is two-dimensional. The flyer is 1.5 cm in length, 0.5 cm in thickness and is divided into 0.25 mm square cells (60 by 20 cells) for the numerical computations. The impact problem was simulated to a final time of 4.0 \(\mu \)s.

The response for this problem was arbitrarily chosen to be the time-averaged pressure, i.e.,

\[
\begin{align*}
R &= \int_0^{t_f} \int_0^V \frac{P}{t_f V} \, d\tau \, dt = \bar{P} .
\end{align*}
\]

so that the adjoint source (appearing in the adjoint pressure equation) for Eq. 6 is

\[
\begin{align*}
\Psi^* &= \frac{1}{t_f V} ,
\end{align*}
\]

where \(t_f \) is the final time and \(V \) is the flyer volume. The interface is represented as linear segments between the dots shown in Fig. 1.

The interface sensitivities for this impact problem are given in Fig. 2 for the space-time-average pressure (14.872 GPa). The sensitivity for each marker is given by

\[
\frac{\partial R}{\partial z_{vo}} = \zeta_v^* \Big|_{t=0}
\]

where \(z_{vo} \) is the initial axial position of the \(v \)th marker. The figure shows the DST sensitivities as hollow dots connected by a solid line, and the "Direct Method" sensitivities \(\Delta R / \Delta \alpha \) (a numerical derivative obtained by determining the change in the response as a result of finite perturbations of each initial axial position) are shown as solid dots connected by a dashed line for validation purposes. Constructing the 20 Direct Method sensitivities required 21 forward calculations, as compared to the 2 calculations (i.e., one forward and one adjoint) needed for the 20 DST sensitivities shown.

SUMMARY AND DISCUSSION

Differential Sensitivity Theory was applied to a two-dimensional set of continuum mechanics equations with a realistic solid phase equation-of-state (i.e., compressible flow) for the purpose of sensitivity analysis. Equations adjoint to a differentiated set of physical equations (differentiated with respect to an arbitrary parameter \(\alpha \)) were derived. The resulting DST equation set was illustrated using a two-dimensional flyer impact problem, computing accurate sensitivity coefficients as validated with
the Direct Method. Curves comparing DST $\partial R/\partial \alpha$ to Direct Method $\partial R/\partial \alpha$ were presented for 20 sensitivities associated with the plate impact problem at a cost of 2 calculations versus 21 calculations, respectively, a saving of 90% in computational time. These low-cost DST sensitivity coefficients can then be used in a subsequent uncertainty analysis, response surface construction or optimization analysis.

Figure 2. Average pressure sensitivity to initial interface axial position.

REFERENCES