Fermi surfaces, Fermi patches, and Fermi arcs in high T{sub c} superconductors.

PDF Version Also Available for Download.

Description

A defining property of metals is the existence of a Fermi surface: for two dimensions, a continuous contour in momentum space which separates occupied from unoccupied states. In this paper, I discuss angle resolved photoemission data on the cuprate superconductor BSCCO and argue that it is not best thought of in this conventional picture. Rather, the data are consistent with patches of finite area connected by more conventional arcs. Novel physics is associated with the patches, in that the states contained in a patch are dispersionless and thus interaction dominated. In the pseudogap phase, the patches are gapped out, leaving ... continued below

Physical Description

8 p.

Creation Information

Norman, M. R. May 19, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A defining property of metals is the existence of a Fermi surface: for two dimensions, a continuous contour in momentum space which separates occupied from unoccupied states. In this paper, I discuss angle resolved photoemission data on the cuprate superconductor BSCCO and argue that it is not best thought of in this conventional picture. Rather, the data are consistent with patches of finite area connected by more conventional arcs. Novel physics is associated with the patches, in that the states contained in a patch are dispersionless and thus interaction dominated. In the pseudogap phase, the patches are gapped out, leaving the Fermi arcs disconnected. This unusual situation may be the key to understanding the microscopic physics of the high temperature superconductors, in that the pairing correlations are strongest in the patches, yet the superfluid density lives only on the arcs.

Physical Description

8 p.

Notes

OSTI as DE00011811

Medium: P; Size: 8 pages

Source

  • Univ. of Miami Conference on High Temperature Superconductivity (HTS99) Conference, Miami, FL (US), 01/07/1999--01/13/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/MSD/CP-99040
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11811
  • Archival Resource Key: ark:/67531/metadc628388

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 19, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 6:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Norman, M. R. Fermi surfaces, Fermi patches, and Fermi arcs in high T{sub c} superconductors., article, May 19, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc628388/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.