Using a hot dry rock geothermal reservoir for load following

PDF Version Also Available for Download.

Description

Field measurements and modeling have shown the potential for using a Hot Dry Rock (HDR) geothermal reservoir for electric load following: either with Power-Peaking from a base-load operating condition, or for Pumped Storage of off-peak electric energy with a very significant thermal augmentation of the stored mechanical energy during periods of power production. For the base-load with power- peaking mode of operation, and HDR reservoir appears capable of producing over twice its nominal power output for short -- 2 to 4 hour -- periods of time. In this mode of operation, the reservoir normally would be produced under a high-backpressure ... continued below

Physical Description

3 p.

Creation Information

Brown, D.W. & Duteau, R.J. January 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Field measurements and modeling have shown the potential for using a Hot Dry Rock (HDR) geothermal reservoir for electric load following: either with Power-Peaking from a base-load operating condition, or for Pumped Storage of off-peak electric energy with a very significant thermal augmentation of the stored mechanical energy during periods of power production. For the base-load with power- peaking mode of operation, and HDR reservoir appears capable of producing over twice its nominal power output for short -- 2 to 4 hour -- periods of time. In this mode of operation, the reservoir normally would be produced under a high-backpressure condition with the HDR reservoir region near the production well highly inflated. Upon demand, the production backpressure would be sharply reduced, surging the production flow. The analytical tool used in these investigations has been the transient finite element model of the an HDR reservoir called GEOCRACK, which is being developed by Professor Dan Swenson and his students at Kansas State University. This discrete-element representation of a jointed rock mass has recently been validated for transient operations using the set of cyclic reservoir operating data obtained at the end of the LTFT.

Physical Description

3 p.

Notes

INIS; OSTI as DE95016996

Source

  • 20. annual workshop on geothermal reservoir engineering, Stanford, CA (United States), 24-26 Jan 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016996
  • Report No.: LA-UR--95-2487
  • Report No.: CONF-950125--2
  • Grant Number: W-7405-ENG-36
  • Office of Scientific & Technical Information Report Number: 105794
  • Archival Resource Key: ark:/67531/metadc628351

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • March 1, 2016, 2:16 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Brown, D.W. & Duteau, R.J. Using a hot dry rock geothermal reservoir for load following, article, January 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc628351/: accessed January 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.