Vapor-liquid equilibria for copolymer+solvent systems: Effect of intramolecular repulsion

PDF Version Also Available for Download.

Description

Role of intramolecular interactions in blend miscibility is well documented for polymer+copolymer mixtures. Some copolymer+polymer mixtures are miscible although their corresponding homopolymers are not miscible; for example, over a range of acrylonitrile content, styrene/acrylonitrile copolymers are miscible with poly(methyl methacrylate) but neither polystyrene nor polyacrylonitrile is miscible with poly(methyl methacrylate). Similarly, over a composition range, butadiene/acrylonitrile copolymers are miscible with poly(vinyl chloride) while none of the binary combinations of the homopolymers [polybutadiene, polyacrylonitrile, and poly(vinyl chloride)] are miscible. This behavior has been attributed to ``intramolecular repulsion`` between unlike copolymer segments. We have observed similar behavior in vapor-liquid equilibria (VLE) of ... continued below

Physical Description

10 p.

Creation Information

Gupta, R.B. & Prausnitz, J.M. March 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 84 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Role of intramolecular interactions in blend miscibility is well documented for polymer+copolymer mixtures. Some copolymer+polymer mixtures are miscible although their corresponding homopolymers are not miscible; for example, over a range of acrylonitrile content, styrene/acrylonitrile copolymers are miscible with poly(methyl methacrylate) but neither polystyrene nor polyacrylonitrile is miscible with poly(methyl methacrylate). Similarly, over a composition range, butadiene/acrylonitrile copolymers are miscible with poly(vinyl chloride) while none of the binary combinations of the homopolymers [polybutadiene, polyacrylonitrile, and poly(vinyl chloride)] are miscible. This behavior has been attributed to ``intramolecular repulsion`` between unlike copolymer segments. We have observed similar behavior in vapor-liquid equilibria (VLE) of copolymer+solvent systems. We find that acrylonitrile/butadiene copolymers have higher affinity for acetonitrile solvent than do polyacrylonitrile or polybutadiene. We attribute this non-intuitive behavior to ``intramolecular repulsion`` between unlike segments of the copolymer. This repulsive interaction is weakened when acetonitrile molecules are in the vicinity of unlike copolymer segments, favoring copolymer+solvent miscibility. We find similar behavior when acetonitrile is replaced by methyl ethyl ketone. To best knowledge, this effect has not been reported previously for VLE. We have obtained VLE data for mixtures containing a solvent and a copolymer as a function of copolymer composition. It appears that, at a given solvent partial pressure, there may be copolymer composition that yields maximum absorption of the solvent. This highly non-ideal VLE phase behavior may be useful for optimum design of a membrane for a separation process.

Physical Description

10 p.

Notes

OSTI as DE95014781

Source

  • 7. international conference on fluid properties and phase equilibria for chemical process design, Snowmass, CO (United States), 18-23 Jun 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95014781
  • Report No.: LBL--36964
  • Report No.: CONF-9506220--1
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 101234
  • Archival Resource Key: ark:/67531/metadc628228

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Aug. 25, 2016, 2:45 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 84

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gupta, R.B. & Prausnitz, J.M. Vapor-liquid equilibria for copolymer+solvent systems: Effect of intramolecular repulsion, article, March 1, 1995; California. (digital.library.unt.edu/ark:/67531/metadc628228/: accessed November 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.