Design and code validation of the Jupiter inductive voltage adder (IVA) PRS driver

PDF Version Also Available for Download.

Description

The proposed Jupiter accelerator is a {approximately} 10-MV, 500-TW system capable of delivering 15-MJ kinetic energy to an imploding plasma radiation source (PRS). The accelerator is based on Hermes-III technology and contains 30 identical inductive voltage adder modules connected in parallel. The modules drive a common circular convolute electrode system in the center of which is located an imploding foil. The relatively high voltage of 8--10 MV is required to compensate for the voltage differential generated across the load due primarily to the fast increase in current (L di/dt) and to lesser extent to the increasing inductance(I dL/dt) and resistive ... continued below

Physical Description

7 p.

Creation Information

Mazarakis, M.G.; Poukey, J.W. & Mendel, C.W. July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The proposed Jupiter accelerator is a {approximately} 10-MV, 500-TW system capable of delivering 15-MJ kinetic energy to an imploding plasma radiation source (PRS). The accelerator is based on Hermes-III technology and contains 30 identical inductive voltage adder modules connected in parallel. The modules drive a common circular convolute electrode system in the center of which is located an imploding foil. The relatively high voltage of 8--10 MV is required to compensate for the voltage differential generated across the load due primarily to the fast increase in current (L di/dt) and to lesser extent to the increasing inductance(I dL/dt) and resistive component of the imploding foil. Here we examine the power flow through the device and, in particular, through the voltage adder and long MITL. Analytical models, such as pressure balance and parapotential flow, as well as circuit and PIC codes, were utilized. A new version of the TWOQUICK PIC code, which includes an imploding, cylindrical foil as load, was utilized to compare the power flow calculations done with SCREAMER and TRIFL. The agreement is very satisfactory and adds confidence to the Jupiter design. In addition, an experimental validation of the design is under way this year (FY95) with Hermes III. Long extension MITLs are connected at the end of the voltage adder with inductive and diode loads to benchmark the above design codes. In this paper we outline the accelerator`s conceptual design with emphasis on the power flow and coupling to the inductive load and include preliminary results of Hermes-III experimental design validation.

Physical Description

7 p.

Notes

OSTI as DE95014882

Source

  • 10. Institute of Electrical and Electronics Engineers (IEEE) pulsed power conference, Albuquerque, NM (United States), 10-13 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95014882
  • Report No.: SAND--95-0048C
  • Report No.: CONF-950750--2
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 102285
  • Archival Resource Key: ark:/67531/metadc628211

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 14, 2016, 8:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Mazarakis, M.G.; Poukey, J.W. & Mendel, C.W. Design and code validation of the Jupiter inductive voltage adder (IVA) PRS driver, article, July 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc628211/: accessed December 10, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.