Hydrodynamically driven two-phase flow, a theory of hydrodynamically driven dynamic mix

PDF Version Also Available for Download.

Description

The author writes the dynamic equations describing the intermixing of two materials starting from the conservation laws. The result is a set of equations for mixing driven by the Rayleigh-Taylor buoyancy force, and amplified by terms which incorporate the Richtmyer-Meshkov and Kelvin-Helmholtz instabilities. Making the assumption of pressure equilibration, the author arrives at equations which predict that mixing will begin, even in the limit of small initial perturbations, and even in a 1-d calculation, when an interface goes Rayleigh-Taylor unstable, unless the drag or material strength forces are sufficiently large to prevent this. The equations given here may be incorporated ... continued below

Physical Description

16 p.

Creation Information

Binstock, J. October 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The author writes the dynamic equations describing the intermixing of two materials starting from the conservation laws. The result is a set of equations for mixing driven by the Rayleigh-Taylor buoyancy force, and amplified by terms which incorporate the Richtmyer-Meshkov and Kelvin-Helmholtz instabilities. Making the assumption of pressure equilibration, the author arrives at equations which predict that mixing will begin, even in the limit of small initial perturbations, and even in a 1-d calculation, when an interface goes Rayleigh-Taylor unstable, unless the drag or material strength forces are sufficiently large to prevent this. The equations given here may be incorporated into 1-d, 2-d, or 3-d codes, for either Lagrangian or Eulerian formulation. They have the nice feature for Lagrangian codes of keeping the zone mass fixed, thus eliminating the need for rezoning.

Physical Description

16 p.

Notes

OSTI as DE96001359

Source

  • Other Information: PBD: Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96001359
  • Report No.: LA--10228-Del.
  • Grant Number: W-7405-ENG-36
  • DOI: 10.2172/114566 | External Link
  • Office of Scientific & Technical Information Report Number: 114566
  • Archival Resource Key: ark:/67531/metadc628208

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 25, 2016, 7:29 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Binstock, J. Hydrodynamically driven two-phase flow, a theory of hydrodynamically driven dynamic mix, report, October 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc628208/: accessed May 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.