Identification of root cause and abatement of vibration of monochromator.

PDF Version Also Available for Download.

Description

Silicon crystal mirrors are used to reflect high-intensity X-ray beams. A large amount of heat is generated in each mirror. To minimize the effect of thermal expansion on the crystal mirrors, heat is removed by pumping liquid gallium (with a boiling point of 29.8 C) through passages in the crystal mirrors. During system operation, mirror motion should be kept to an acceptable level to avoid performance degradation. There are many potential sources of excitation to the crystal assembly; one such source is the flowing gallium. Two series of tests were performed earlier for a near-prototypical gallium cooling system (1-2). This ... continued below

Physical Description

15 p.

Creation Information

Jendrzejczyk, J. A. January 13, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Silicon crystal mirrors are used to reflect high-intensity X-ray beams. A large amount of heat is generated in each mirror. To minimize the effect of thermal expansion on the crystal mirrors, heat is removed by pumping liquid gallium (with a boiling point of 29.8 C) through passages in the crystal mirrors. During system operation, mirror motion should be kept to an acceptable level to avoid performance degradation. There are many potential sources of excitation to the crystal assembly; one such source is the flowing gallium. Two series of tests were performed earlier for a near-prototypical gallium cooling system (1-2). This paper describes a series of tests to measure the general vibration response characteristics of critical components in the monochromator system that contains the mirrors. The main objective of this work is to identify the root cause of vibration and to recommend general guidelines for abatement of vibration. This is achieved by performing many tests to understand the response characteristics under various conditions, by analysis of the response data, and by use of some theoretical considerations.

Physical Description

15 p.

Notes

INIS; OSTI as DE00010559

Medium: P; Size: 15 pages

Source

  • 1998 ASME/JSME Joint Pressure Vessel and Piping Conference, San Diego, CA (US), 07/26/1998--07/30/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-95325
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10559
  • Archival Resource Key: ark:/67531/metadc628197

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 13, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 2:59 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Jendrzejczyk, J. A. Identification of root cause and abatement of vibration of monochromator., article, January 13, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc628197/: accessed June 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.