AN AERIAL RADIOLOGICAL SURVEY OF PROJECT GASBUGGY AND SURROUNDING AREA

RIO ARRIBA COUNTY, NEW MEXICO

DATE OF SURVEY: OCTOBER 27, 1994

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
AN AERIAL RADIOLOGICAL SURVEY OF
PROJECT GASBUGGY
AND SURROUNDING AREA

RIO ARRIBA COUNTY, NEW MEXICO

DATE OF SURVEY: OCTOBER 27, 1994

T. J. Hendricks
Project Scientist

REVIEWED BY

H. W. Clark, Jr., Manager
Radiation Science Section

This Document is UNCLASSIFIED

J. E. Jobst
Authorized Derivative Classifier

This work was performed by EG&G/EM for the United States Department of Energy under Contract Number DE-AC08-93NV11265.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
ABSTRACT

An aerial radiological survey was conducted over the Project Gasbuggy site, 55 miles (89 kilometers) east of Farmington, New Mexico, on October 27, 1994. Parallel lines were flown at intervals of 300 feet (91 meters) over a 16-square-mile (41-square-kilometer) area at a 150-foot (46-meter) altitude centered on the Gasbuggy site. The gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a high altitude aerial photograph of the area. The terrestrial exposure rate varied from 14 to 20 µR/h at 1 meter above ground level. No anomalous or man-made isotopes were found.
CONTENTS

Abstract .. ii

Sections

1.0 Introduction ... 1
2.0 Site Description .. 1
3.0 Natural Background Radiation ... 1
4.0 Survey Equipment .. 2
 4.1 Aerial Measuring System .. 2
 4.2 Mobile Data Processing Laboratory ... 2
5.0 General Data Reduction .. 2
6.0 Aerial Survey Results ... 2
7.0 Summary ... 4

Figures

1 MBB BO-105 Helicopter with Detector Pods ... 2
2 Terrestrial Gamma Exposure Rate Map of the Gasbuggy Site 3
3 Distribution of Observed Terrestrial Gamma Exposure Rate Data 4
4 Terrestrial Gamma Energy Spectrum of the Gasbuggy Site 4

Appendices

A Survey Parameters ... 5
B General Data Analysis Methods .. 6

References .. 8
1.0 INTRODUCTION

An aerial radiological survey of the Project Gasbuggy site in Rio Arriba County, New Mexico, took place on October 27, 1994. The Gasbuggy site is located approximately 55 miles (89 kilometers) east of Farmington, New Mexico. The survey was conducted at the request of the Department of Energy (DOE) and performed by personnel of EG&G Energy Measurements, Inc. (EG&G/EM), which operates the Remote Sensing Laboratory (RSL) in Las Vegas, Nevada, for DOE/NV.¹

One of RSL’s missions is to maintain and manage an aerial surveillance capability called the Aerial Measuring System (AMS) program. Since its inception in 1958, AMS has continued a nationwide effort to document baseline radiological conditions at nuclear energy-related sites of interest to DOE. These sites include power plants, manufacturing and processing plants, and research laboratories using nuclear materials. The Project Gasbuggy site was of interest to DOE, since it was the location of the first underground explosion in the Plowshare experiment series designed to determine the potential of using nuclear stimulation for the development of gas-bearing formations.

Project Gasbuggy was divided into three phases. Phase One included drilling the preshot exploratory and emplacement holes, as well as preshot gas production tests, and geologic and hydrologic investigations. Phase Two was the detonation of a 29-kiloton-yield nuclear device on December 10, 1967, at a depth of 4,240 feet (1,290 meters) below the land surface.² Phase Three was the controlled drillback into the cavity followed by flow testing of the gas to determine the cavity size and the rate and volume at which natural gas could be produced.

Site cleanup activities were conducted and radioactively contaminated materials and equipment were packaged and removed for disposal at the Nevada Test Site. The purpose of this survey was to ensure that no radioactive contamination remains in the area. This was the first AMS survey of the site.

A gamma exposure rate map derived from the aerial data indicates the terrestrial exposure at 3 feet (1 meter) above the ground. A search for man-made gamma emitters in the data found none.

2.0 SITE DESCRIPTION

The Project Gasbuggy site is located in the southwest 1/4, Section 36, Township 29 north, Range 4 west, Rio Arriba County, New Mexico (36:40:40.4N latitude, 107:12:30.3W longitude). It is situated on the west slope of Leandro Canyon at an elevation of approximately 7,200 feet (2,200 meters).

3.0 NATURAL BACKGROUND RADIATION

Natural background radiation originates from three main sources: radioactive elements present in the soil, airborne radon, and cosmic rays of extraterrestrial origin. Natural terrestrial radiation levels depend upon the type of soil and bedrock immediately below and surrounding the point of measurement. Terrestrial gamma radiation originates primarily from the radioactive decay of elements naturally found in the soil and bedrock, namely, radioactive potassium and isotopes produced in the uranium and thorium decay chains. Local concentrations of these isotopes produce radiation levels at the surface typically ranging from 1 to 15 μR/h.³ Areas with high uranium and/or thorium concentrations may exhibit slightly higher levels.

One member of both the uranium and thorium radioactive decay chains is radon, a noble gas that can both diffuse through the soil and travel through the air. Therefore, the level of airborne radiation due to radon and its daughter products depends on a variety of factors for a given location, including meteorological conditions, mineral content of the soil, and soil permeability. Typically, airborne radiation from radon and its progeny contributes from 1 to 10 percent of the natural background radiation levels.

Cosmic rays (high energy radiation originating from outer space) interact with elements of the earth’s atmosphere and soil, producing an additional source of gamma radiation. Across the United States, radiation levels due to cosmic rays vary with altitude from 3.3 μR/h at sea level to 9.8 μR/h at elevations of 9,000 feet (2,700 meters).⁴

Cesium-137 (¹³⁷Cs), a by-product of nuclear fission, is also present in trace quantities worldwide as a result of fallout from aboveground nuclear weapon tests conducted prior to the early 1960s by the United States and the former Soviet Union and, subsequently, by China and France. Exposure rates due to ¹³⁷Cs in the environment are typically less than 1 μR/h.⁵
4.0 SURVEY EQUIPMENT

4.1 Aerial Measuring System

The low-altitude aerial survey was flown using a Messerschmitt-Bolkow-Blohm (MBB) BO-105 helicopter shown in Figure 1. The twin-engine helicopter carried a crew of two and a lightweight version of the Radiation and Environmental Data Acquisition and Recorder System, Version IV (REDAR IV). The helicopter flew at an altitude of 150 feet (46 meters) using a grid pattern of parallel flight lines spaced 300 feet (91 meters) apart to cover the 16-square-mile (41-square-kilometer) area. Detector pods mounted on the sides of the skid rack on the helicopter contained a total of eight 2- x 4- x 16-inch and two uplooking 2- x 4- x 4-inch log-type thallium-activated sodium iodide, NaI(Tl), scintillation detectors.

The energy signals produced through the interaction of gamma rays with the NaI(Tl) crystals were analyzed by analog-to-digital convertors in the REDAR IV system. The REDAR IV is a multimicroprocessor data acquisition and real-time analysis system designed to operate in the severe environments associated with platforms such as helicopters, fixed-wing aircraft, and various ground-based vehicles. The system relays radiation and positional information in real time to the operator via video displays and multiple LED readouts. The gamma ray, aircraft position, and weather data are recorded at one-second intervals on magnetic cartridge tapes for postflight analysis on a ground-based minicomputer system.

The aircraft position was established using a Real-time Differential Global Positioning System (RDGPS) and a radar altimeter. A GPS base station transmitted a positional correction to a GPS unit housed in the helicopter. The transmitted correction received by the helicopter’s GPS unit minimized the positional uncertainty to ±15 feet (5 meters). The position was recorded on magnetic tape and directed into the steering indicator which the pilot used to guide the aircraft along a predetermined set of flight lines.

4.2 Mobile Data Processing Laboratory

The base of operations for the survey was the Farmington Airport, located approximately 55 miles (89 kilometers) west of the Gasbuggy site in Farmington, New Mexico. The Radiation and Environmental Data Analyzer and Computer (REDAC) system, a mobile computer laboratory for analysis of the aerial survey data, was located at the base of operations. The REDAC system consists of a Data General MV-7800XP computer with 4 megabytes of memory, a 4-gigabyte SCSI disk subsystem for mass storage, an 8mm tape drive, a 1/4-inch cartridge drive, two 9-track tape drives for data transfer and archiving, a 36-inch-wide plotter for data contouring, a laser printer, and two IBM personal computers for terminal emulation.

The REDAC system utilizes an extensive software library for analysis of the pre-and postflight REDAR IV and detector system checks, and provides on-site preliminary analysis of the aerial measurements on a flight-by-flight basis.

5.0 GENERAL DATA REDUCTION

Two primary methods are used to evaluate the gamma fluence rate measurements made with the aerial system’s NaI(Tl) detectors. The first is the gross count (GC) technique which is used to determine exposure rate; the second is the spectral window technique which is used to measure concentrations of specific nuclides. These are described in Appendix B.

6.0 AERIAL SURVEY RESULTS

The principal result of the aerial survey and analysis is the terrestrial exposure rate contour map of the Gasbuggy site shown in Figure 2. This map represents gamma exposure rates at 1 meter above ground level (AGL) due to gamma-emitting isotopes in the soil. Investigative analysis of the aerial data for man-made isotopes produced a negative result.

Figure 3 shows the distribution of observed exposure rates in the survey area. Approximately 88% of the...
FIGURE 2. TERRESTRIAL GAMMA EXPOSURE RATE MAP OF THE GASBUGGY SITE

*Inferred from gamma gross count data observed at 150 foot altimeter. Also includes an estimated cosmic contribution of 7.8 µR/hr.

<table>
<thead>
<tr>
<th>LETTER LABEL</th>
<th>TERRESTRIAL EXPOSURE RATE µR/PER HOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>- 11</td>
</tr>
<tr>
<td>B</td>
<td>11 13</td>
</tr>
<tr>
<td>C</td>
<td>13 15</td>
</tr>
<tr>
<td>D</td>
<td>15 17</td>
</tr>
<tr>
<td>E</td>
<td>17 19</td>
</tr>
</tbody>
</table>
data fall within the limits of 15+ through 17 μR/h. Figure 4 is a representation of the typical gamma ray energy spectrum obtained of the Gasbuggy site. Visible peaks in the energy spectrum identify only natural background radiation made up of natural radioactive potassium (\(^{40}\text{K}\)), uranium daughter bismuth-214 (\(^{214}\text{Bi}\)), and thorium daughters thallium-208 (\(^{208}\text{Tl}\)) and actinium-228 (\(^{228}\text{Ac}\)).

Most fission and activation isotopes emit gamma rays and may be detected at some minimum activity level by the AMS. The man-made gross count (MMGC) algorithm, outlined in Appendix B, yielded no measurable man-made gamma activity in the survey area. It should be noted that man-made radioactivity may exist at activities below the minimum detectable levels of the aerial system. Minimum detectable levels for the MMGC algorithm are geometry and isotope dependent. For this summary, the maximum activity that could escape detection, over an area with a 300-foot diameter or more, is approximately 1 μR/h. Also, buried or shielded radioactivity may not be detected.

No attempt has been made in this report to map the very low levels of \(^{137}\text{Cs}\), an international fallout fission product. This isotope is found nearly everywhere in the northern hemisphere at or below the minimum detectable activity of the aerial gamma system. Concentrations of \(^{137}\text{Cs}\) above the minimum detectable activity would have been found in the MMGC search method discussed in Appendix B.

7.0 SUMMARY

An aerial radiological survey of the Project Gasbuggy site, Rio Arriba County, New Mexico, was conducted on October 27, 1994. An area of 16 square miles (41 square kilometers) was surveyed at an altitude of 150 feet (46 meters) using a grid pattern consisting of parallel flight lines flown at a nominal spacing of 300 feet (91 meters). The typical terrestrial gamma radiation exposure rate was found to vary from 14 to 19 μR/h. No significant man-made radioactivity was found.
APPENDIX A
SURVEY PARAMETERS

Survey Site: Project Gasbuggy
Rio Arriba County, New Mexico

Survey Date: October 27, 1994

Survey Altitude: 150 ft (46 m)

Line Spacing: 300 ft (91 m)

Line Direction: North-South

Lines Surveyed: 71

Ground Speed: 75 knots (39 m/s)

Survey Coverage: 16 mi² (41 km²)

Survey Aircraft: MBB BO-105 helicopter
Tail #N60EG

Navigation System: RDGPS

Acquisition System: REDAR IV

Detector Array 1: Eight 2- × 4- × 16- inch NaI(Tl) detectors

Detector Array 2: Two 2- × 4- × 4- inch NaI(Tl) detectors

System Sensitivity: 965 counts/sec per μR/h

Project Scientist: T.J. Hendricks
APPENDIX B
GENERAL DATA ANALYSIS METHODS

A few useful methods to treat gamma energy spectra as measured by NaI(Tl) are discussed below.

Gross Count Rate

The gross count (GC) rate is defined as the integral count in the energy spectrum between 38 keV and 3,026 keV.

\[GC = \sum_{E=38 \text{ keV}}^{3026 \text{ keV}} \text{Energy Spectrum} \quad (B-1) \]

This integral includes all the natural isotope gammas from 40K, 238U, and 232Th (KUT, the major terrestrial, natural gamma emitters). Other natural contributors to this integral are cosmic rays, aircraft background, and airborne radon daughters.

The response versus altitude of the aerial system to terrestrial gammas has been measured over a documented test line near Las Vegas, Nevada, for which the concentrations of KUT and the 1-meter exposure rates have been measured separately. From this calibration, the terrestrial gross count rate has been associated with the 1-meter exposure rate in microroentgens per hour (μR/h) for natural radioactivity. The conversion equation is:

\[E(1m) = \frac{GC(A) - B}{965} \cdot e^{-0.001494A} \quad (B-2) \]

where

- \(E(1m) \) = Exposure rate extrapolated to 1 m AGL (μR/h)
- \(A \) = Altitude in feet
- \(GC(A) \) = Gross count rate at altitude A (cps)
- \(B \) = Cosmic, aircraft, and radon background (cps) \(B \) is obtained from flights over bodies of water, where the terrestrial count rate is absent.

The gross count has been used for many years in the aerial system as a measure of exposure. Its simplicity yields a rapid assessment of the gamma environment.

Anomalous, or non-natural, gamma sources are found from increases in the gross count rate over the natural count rate. However, subtle anomalies are difficult to find using the gross count rate in areas where its magnitude is variable due, for example, to geologic or ground cover changes. Differential energy data reduction methods, as discussed in the next section, are used to increase the sensitivity of the aerial system to anomalous gamma emitters.

Man-Made Gross Count Search Method

Each second, the aerial system produces a gamma energy spectrum from which the GC is computed. Generally, the ratio of natural components in any two integral sections (windows) of the energy spectrum will remain nearly constant in any given area:

\[\sum_{E=a}^{b} ES = \sum_{E=b}^{c} ES = \text{Constant} = K \quad (B-3) \]

where

- \(ES \) = Energy Spectrum
- \(E \) = Energy
- \(a < b < c \)

The window, \(a-b \), is placed where gamma rays from a man-made emitter would occur in the spectrum. The result of Equation B-3 could be expected to increase over the constant value. This equation is routinely applied in the data reduction software when a search is made for specific isotopes.

\[S = \sum_{E=a}^{b} ES - K \sum_{E=b}^{c} ES \quad (B-4) \]

The net signal, \(S \), is zero unless anomalous gamma rays are measured in the window defined by \(a \) and \(b \).

Equation B-4 is used to locate specific isotopes by setting \(a \) and \(b \) to enclose the photopeak of the particular gamma from the isotope. For the general case
when any man-made isotope is sought, \(a \), \(b \), and \(c \) are set at 38 keV, 1,394 keV, and 3,026 keV, respectively. Because most long-lived man-made isotopes emit gammas in the energy range 38 keV to 1,394 keV, Equation B-4 becomes a general search tool and is called the man-made gross count.
REFERENCES

<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DOE/DP</th>
<th>DOE/NSIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.E. Gordon-Hagerty (1)</td>
<td>R.S. Scott (3)</td>
</tr>
<tr>
<td>O.W. Taylor (1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EG&G/EM</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. F. Doyle LVAO (1)</td>
</tr>
<tr>
<td>T. J. Hendricks LVAO (1)</td>
</tr>
<tr>
<td>G.R. Shipman WAMO (1)</td>
</tr>
<tr>
<td>W. J. Tipton LVAO (1)</td>
</tr>
<tr>
<td>P.H. Zavattaro LVAO (1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOE/HQ</th>
<th>LIBRARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSTI (25)</td>
<td>RSL (30)</td>
</tr>
<tr>
<td></td>
<td>TIC (1)</td>
</tr>
<tr>
<td></td>
<td>WAMO (1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOE/NV</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.R. Dockter (1)</td>
</tr>
<tr>
<td>K.D. Leary (10)</td>
</tr>
<tr>
<td>C.A. Santilli (1)</td>
</tr>
<tr>
<td>W.C. Suter (1)</td>
</tr>
</tbody>
</table>

AN AERIAL RADIOLOGICAL SURVEY OF PROJECT GASBUGGY AND SURROUNDING AREA RIO ARRIBA COUNTY, NEW MEXICO EGG 11265-1129 DATE OF SURVEY: OCTOBER 27, 1994 DATE OF REPORT: AUGUST 1995