WIPP Benchmark Calculations with the Large Strain SPECTROM Codes

G. D. Callahan, K. L. DeVries
RE/SPEC Inc.
Rapid City, SD 57709-0725

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-94AL85000

Approved for public release; distribution is unlimited.

Printed August 1995
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
WIPP Benchmark Calculations with the Large Strain SPECTROM Codes

G.D. Callahan
K.L. DeVries
RE/SPEC Inc.
Rapid City, SD 57709-0725

ABSTRACT

This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems (Morgan et al., 1981) and for a simplified heated room problem used in a parallel design calculation study (Munson and Morgan, 1986). The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period.

The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations.

A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.
CONTENTS

1.0 INTRODUCTION ... 1

2.0 CODE DESCRIPTION ... 3
 2.1 General Structure and Capabilities ... 3
 2.1.1 SPECTROM-32 .. 3
 2.1.2 SPECTROM-333 ... 5
 2.2 Initial Stresses ... 6
 2.3 Slide Lines ... 6
 2.4 Thermal Structural Modeling ... 7
 2.5 Verification Problem ... 7

3.0 PROBLEM DESCRIPTIONS ... 11
 3.1 Benchmark II Isothermal Room Configuration 11
 3.2 Benchmark II Heated Room Configuration 13
 3.3 Simplified Heated Parallel Problem Configuration 16

4.0 COMPUTATIONAL RESULTS .. 21
 4.1 Benchmark II Isothermal Room Results 23
 4.1.1 Structural Mesh Statistics ... 23
 4.1.2 Displacement Histories and Deformed Mesh 23
 4.1.3 Relative Displacements Across the Slide Lines 30
 4.1.4 Stress Profiles .. 35
 4.2 Benchmark II Heated Room Results 35
 4.2.1 Temperature Calculations ... 35
 4.2.2 Structural Mesh Statistics ... 41
 4.2.3 Displacement Histories and Deformed Mesh 41
 4.2.4 Relative Displacements Across the Slide Lines 45
 4.2.5 Stress Profiles .. 53
 4.3 Simplified Heated Room Calculation Results 53
 4.3.1 Thermal Calculations ... 53
 4.3.2 Structural Mesh Statistics ... 60
CONTENTS (Continued)

4.3.3 Displacement Histories and Deformed Mesh .. 60
4.3.4 Stress Profiles .. 64

5.0 CONCLUSIONS ... 71
5.1 Benchmark II Isothermal Room ... 71
5.2 Benchmark II Heated Room ... 71
5.3 Simplified Heated Room ... 72
5.4 Summary .. 73

6.0 REFERENCES ... 75

APPENDIX A: MATERIAL CHARACTERIZATION ... A-1

Tables

3-1 Mechanical properties for the simplified heated parallel calculation 18
3-2 Thermal properties for the simplified heated parallel calculation 19
4-1 Features of finite element codes and mesh statistics 22
A-1 Mechanical properties for the Benchmark II problem (upper level, nominal
655 m) ... A-3
A-2 Thermal properties for the Benchmark II problem ... A-4

Figures

2-1 Comparison of SPECTROM-32 and SPECTROM-333 results with the analytical solution
for the simple shear problem ... 9
3-1 Benchmark II isothermal room configuration .. 12
3-2 Stratigraphic details for the Benchmark II problem ... 14
3-3 Benchmark II heated room configuration .. 15
Figures (Continued)

3-4 Stratigraphy and boundary conditions for the heated parallel structural calculation .. 17
4-1 SPECTROM-32 structural mesh and stratigraphy used for the Benchmark II isothermal room calculation ... 24
4-2 Vertical closure histories for the Benchmark II isothermal room .. 26
4-3 Midpillar horizontal displacement histories for the Benchmark II isothermal room ... 27
4-4 SPECTROM-32 Benchmark II isothermal room deformed mesh at 10 years ... 28
4-5 SPECTROM-333 Benchmark II isothermal room deformed mesh at 10 years ... 29
4-6 Relative slip across the 642.98-m slide line for the Benchmark II isothermal room ... 31
4-7 Relative slip across the 650.20-m slide line for the Benchmark II isothermal room ... 32
4-8 Relative slip across the 661.02-m slide line for the Benchmark II isothermal room ... 33
4-9 Relative slip across the 669.10-m slide line for the Benchmark II isothermal room ... 34
4-10 Effective stress profiles through the pillar of the Benchmark II isothermal room ... 36
4-11 Vertical stress profiles through the pillar of the Benchmark II isothermal room ... 37
4-12 Effective stress profiles along the vertical centerline of the Benchmark II isothermal room ... 38
4-13 Horizontal stress profiles along the vertical centerline of the Benchmark II isothermal room ... 39
4-14 Thermal mesh used for the Benchmark II heated room configuration ... 40
4-15 Temperature histories for the Benchmark II heated room configuration computed with SPECTROM-41 ... 42
4-16 SPECTROM-32 structural mesh and stratigraphy used for the Benchmark II heated room calculation ... 43
4-17 Vertical closure histories for the Benchmark II heated room ... 44
4-18 Midpillar displacement histories for the Benchmark II heated room ... 46
4-19 SPECTROM-32 Benchmark II heated room deformed mesh at 10 years ... 47
4-20 SPECTROM-333 Benchmark II heated room deformed mesh at 10 years ... 48
4-21 Relative slip across the 638.86-m slide line for the Benchmark II heated room ... 49
4-22 Relative slip across the 642.98-m slide line for the Benchmark II heated room ... 50
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-23</td>
<td>Relative slip across the 650.20-m slide line for the Benchmark II heated room</td>
<td>51</td>
</tr>
<tr>
<td>4-24</td>
<td>Relative slip across the 661.02-m slide line for the Benchmark II heated room</td>
<td>52</td>
</tr>
<tr>
<td>4-25</td>
<td>Effective stress profiles through the pillar of the Benchmark II heated room</td>
<td>54</td>
</tr>
<tr>
<td>4-26</td>
<td>Vertical stress profiles through the pillar of the Benchmark II heated room</td>
<td>55</td>
</tr>
<tr>
<td>4-27</td>
<td>Effective stress profiles along the vertical centerline of the Benchmark II heated room</td>
<td>56</td>
</tr>
<tr>
<td>4-28</td>
<td>Horizontal stress profiles along the vertical centerline of the Benchmark II heated room</td>
<td>57</td>
</tr>
<tr>
<td>4-29</td>
<td>Thermal mesh used for the simplified heated room configuration</td>
<td>58</td>
</tr>
<tr>
<td>4-30</td>
<td>Temperature histories for the simplified heated room configuration computed with SPECTROM-41</td>
<td>59</td>
</tr>
<tr>
<td>4-31</td>
<td>SPECTROM-32 structural mesh and stratigraphy used for the simplified heated room configuration</td>
<td>61</td>
</tr>
<tr>
<td>4-32</td>
<td>Vertical closure histories for the simplified heated room problem</td>
<td>62</td>
</tr>
<tr>
<td>4-33</td>
<td>Midpillar displacement history for the simplified heated room</td>
<td>63</td>
</tr>
<tr>
<td>4-34</td>
<td>SPECTROM-32 simplified heated room deformed mesh at 5 years</td>
<td>65</td>
</tr>
<tr>
<td>4-35</td>
<td>SPECTROM-333 simplified heated room deformed mesh at 5 years</td>
<td>66</td>
</tr>
<tr>
<td>4-36</td>
<td>Effective stress profiles through the pillar of the simplified heated room</td>
<td>67</td>
</tr>
<tr>
<td>4-37</td>
<td>Vertical stress profiles through the pillar of the simplified heated room</td>
<td>68</td>
</tr>
<tr>
<td>4-38</td>
<td>Effective stress profiles along the vertical centerline of the simplified heated room</td>
<td>69</td>
</tr>
<tr>
<td>4-39</td>
<td>Horizontal stress profiles along the vertical centerline of the simplified heated room</td>
<td>70</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This report presents the computational results from SPECTROM-32 (Callahan et al., 1989) and SPECTROM-333 obtained by RE/SPEC Inc. for three boundary value problems. SPECTROM-32 and SPECTROM-333 were not part of the original nine structural codes used in the comparative analyses described by Morgan et al. (1981) because they were not available at the time. To qualify SPECTROM-32, a report was prepared by RE/SPEC and submitted to Sandia containing the SPECTROM-32 results determined for the Benchmark II problems. After Sandia reviewed the report, RE/SPEC received a formal letter from Sandia stating that SPECTROM-32 was found qualified to Benchmark II specifications. Since that time, the capabilities of SPECTROM-32 have been expanded to include finite strain computational capabilities (Version 4.06). SPECTROM-333 is an undocumented finite element stress analysis computer program developed by RE/SPEC under the auspices of the Office of Civilian Radioactive Waste Management through Battelle Memorial Institute, Project Management Division, Office of Nuclear Waste Isolation. The theoretical basis of the code is given by Chaudhary et al. (1987). This report is intended to demonstrate that SPECTROM-32 and SPECTROM-333 are qualified to the Benchmark II specifications and are capable of solving complex problems similar to those commonly analyzed for the Waste Isolation Pilot Plant (WIPP) Program.

The three boundary value problems solved include the isothermal and heated room configurations used for the WIPP Benchmark II study (Krieg et al., 1980) and the simplified heated problem used in the parallel design study for developing quality assurance methodology for nuclear waste repository design calculations (Munson and Morgan, 1986). Munson and Morgan (1986) present results obtained from three boundary value problems that have been referred to as the primary, secondary, and simplified heated problems. The simplified heated problem was used to isolate possible sources of error and to resolve discrepancies encountered during the parallel calculations (in particular, large displacement effects). An analysis of the simplified heated problem was performed to provide an additional validation problem to qualify the codes. These three boundary value problems test a variety of code capabilities and provide a good basis from which to judge the applicability of the codes.

The problems presented in this report emphasize several of the nonlinear deformation features known to influence repository behavior. The three problems were selected because a direct comparison could be made between the results obtained by SPECTROM-32 and SPECTROM-333 with those obtained by independent researchers using different codes. Because an analytic solution does not exist for the complex problem of modeling room response, comparison of the
results with those obtained by other codes for an identical problem is an acceptable method for qualifying a code. One objective of the benchmark problem exercise was to compare directly the results and computer codes of a number of different researchers. The fact that several sets of results are in agreement does not mean that they represent the correct solution; it merely indicates the probable correct solution. If results differ significantly, probable reasons for the discrepancies can be identified and investigated.

The remainder of this report is divided into five chapters. Chapter 2.0 provides a brief description of SPECTROM-32 and SPECTROM-333 capabilities and includes a section describing how the frictionless slide lines of the Benchmark II problems were modeled. A brief description of the Benchmark II problems and the simplified heated room calculation is given in Chapter 3.0. Detailed results of the three room analyses are presented in Chapter 4.0, and a number of conclusions regarding the results of the large strain SPECTROM codes are summarized in Chapter 5.0. References and a detailed discussion of the material characterization for the Benchmark II problems are provided in Chapter 6.0 and Appendix A, respectively.
2.0 CODE DESCRIPTION

SPECTROM-32 and SPECTROM-33 are updated-Lagrangian, finite-strain computer codes based on the finite element method. Finite-deformation or finite-strain terminology is used to describe the condition when no restrictions are imposed on the magnitude of the deformations or gradients of the deformation. A formulation in terms of the undeformed configuration is usually called the Lagrangian formulation. SPECTROM-32 was developed as an internal research and development project at RE/SPEC. Since its initial development, SPECTROM-32 has been enhanced under the auspices of Sandia National Laboratories. These enhancements primarily involve the implementation of constitutive models for crushed salt and damaged intact salt and a finite strain solution option. The theory, user’s manual, and example problems for SPECTROM-32 are described by Callahan et al. (1989). Development of SPECTROM-33 was initiated by RE/SPEC under the auspices of the Office of Nuclear Waste Isolation (ONWI). The theory upon which the code is based has been described by Chaudhary et al. (1987). The following sections provide details on specific code topics relevant to the current study.

2.1 General Structure and Capabilities

This section provides a brief description of the general structure and capabilities of SPECTROM-32 and SPECTROM-33. Although the two codes are similar in many respects, they contain enough differences to require separate discussion, which is contained in the next two sections.

2.1.1 SPECTROM-32

SPECTROM-32 is a finite element program designed to solve thermomechanical boundary-value problems in two-dimensional planar and axisymmetric geometries. Finite and small strain solution options are included. Surface loading and boundary conditions may be prescribed as functions of time. Construction sequences such as excavation and backfilling may be prescribed at specific times. Several constitutive models may be functions of temperature. The thermal and mechanical problems are assumed to be coupled one way. Thus, temperature histories must be provided by an external heat transfer simulator. SPECTROM-32 presently contains the following constitutive models:
• Isotropic, linear elastic (Timoshenko and Goodier, 1970)
• Transversely isotropic, linear elastic (Hearmon, 1961; Lekhnitskii, 1963)
• Nonlinear elastic (Owen and Hinton, 1980)
• Norton power law (Norton, 1929; Anderson, 1976)
• Munson-Dawson multimechanism (M-D) model (Munson and Dawson, 1982; Munson et al., 1989)
• MDCF (Munson-Dawson with damage) model (Chan et al., 1992)
• Crushed salt consolidation model (Sjaardema and Krieg, 1987; Callahan and DeVries, 1991)
• TRU waste compaction model (Taylor and Flannagan, 1987; Stone et al., 1988).

A number of additional elastoplastic and viscoplastic material models are available in the code, which are described in the code documentation (Callahan et al., 1989); however, the above list includes those most frequently used for WIPP calculations.

The code uses displacement-based four-node, six-node, eight-node, and nine-node isoparametric elements. Discussion of isoparametric elements can be found in almost any textbook on finite elements (e.g., Cook, 1974; Segerlind, 1976; Zienkiewicz, 1977; Irons and Ahmad, 1980; and Owen and Hinton, 1980). Constitutive relationships use the Green-Naghdi rate of Cauchy stress tensor and the rate of deformation tensor (Malvern, 1969; Dienes, 1979; Pinsky et al., 1983; Roy et al., 1992). The advancement of the material state through the constitutive relations is achieved incrementally with a trial solution corrected by iteration, which is driven by equilibrium. The finite rotation algorithm is based on the simple yet robust polar decomposition scheme of Hoger and Carlson (1984) made available by application of the Cayley-Hamilton theorem.

To solve the system of equations generated through the finite element methodology, the code uses a frontal solver. Options are available for restarting solutions and initiating solutions from a previously established initial stress state. SPECTROM-32 uses the simple forward method to evaluate inelastic strain increments. The solution performs a complete stiffness matrix update based on a user-prescribed tolerance for change in the effective strain and whenever excavation or backfill operations occur. The geometry and external loads are updated every iteration so that the solution is based on the current configuration.
2.1.2 SPECTROM-333

SPECTROM-333 is a finite element program composed of two separate modules (A and B). Module A is by far the larger module and serves as the preprocessor and postprocessor for the calculational portion (Module B). Both modules can be executed interactively or in batch mode. The program is operational for two-dimensional planar and axisymmetric geometries. Finite and small strain solution options are included. Surface loading and boundary conditions may be prescribed with history functions. Material properties may be prescribed as functions of time and temperature. The thermal and mechanical problems are assumed to be coupled one way. Thus, temperature histories must be provided by an external heat transfer calculator. SPECTROM-333 presently contains the following constitutive models:

- Isotropic, linear elastic (Timoshenko and Goodier, 1970)
- Orthotropic, linear elastic (Hearmon, 1961; Lekhnitskii, 1963)
- Fully anisotropic, linear elastic (Hearmon, 1961; Lekhnitskii, 1963)
- Norton power law (Norton, 1929; Anderson, 1976)
- Krieg unified creep plasticity (Krieg, 1982)
- Munson-Dawson multimechanism (M-D) model (Munson and Dawson, 1982; Munson et al., 1989).

The code uses a displacement-based, four-node isoparametric element which is presently the only element implemented in the code. Constitutive relationships use the Green-Naghdi rate of Cauchy stress tensor and the rate of deformation tensor. The advancement of the material state through the constitutive relations is considered to be separate from the load steps. With this subincrementation process, flexibility in solution strategy is obtained since the time steps at the constitutive and global levels may be different. Constitutive model integration is accomplished using first through fourth order Runge-Kutta integration schemes. The error tolerance in the constitutive model integration may be specified by the user.

To solve the system of equations generated through the finite element methodology, the code uses a frontal solver. An option is available for performing linear-elastic solutions or for establishing an initial stress state. Various nonlinear solution strategies have been incorporated into SPECTROM-333 including the full Newton-Raphson (Newton), the Modified Newton-Raphson, and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update (Matthies and Strang, 1979). The Newton solution performs a complete stiffness matrix (tangent or gradient matrix) update for each iteration within a load/time increment. The Modified Newton-Raphson technique performs a
gradient matrix update only for the first iteration of each increment. The BFGS technique is a
quasi-Newton method that essentially performs a rank two update between iterations (see
Matthies and Strang, 1979). Each of the above techniques may be supplemented with a line
search, which is a linear search in the direction of the current displacement increment. The line
search involves locating the zero of the potential energy. Computationally, the line search
evaluates the constitutive models for various configurations until the zero of the potential energy
is reasonably approximated. The three boundary value problems described in this report were
solved using the BFGS solution supplemented with a line search.

2.2 Initial Stresses

The initial stress state for the qualification problems requires input of a lithostatic stress
state. In SPECTROM-333, a lithostatic stress state is specified by the user with the initial stress
option. SPECTROM-333 uses this initial stress state in conjunction with the prescribed body forces
and boundary conditions to determine if the model is in equilibrium. If the model is not in
equilibrium, iterations are performed until equilibrium is satisfied based on the convergence
tolerances specified. Specification of the initial state of stress in SPECTROM-32 is identical to
SPECTROM-333 with an added feature. SPECTROM-32 has a surface initialization option whereby
the forces required to make a preexisting surface free of shear and normal forces are computed
and used to speed convergence of the solution.

2.3 Slide Lines

Elements with anisotropic properties and very small physical thickness were used as slide
line elements to model the clay seams. The slide line element width is on the order of 100,000
times its height. For the benchmark problems, slide line elements were given a height of
0.00003 m for the SPECTROM-333 analyses and 0.0002 m for the SPECTROM-32 analyses. The bulk
modulus of the slide line elements was the same value as that used for halite and the shear
modulus was set to zero for SPECTROM-333 and very close to zero (10^{15} \text{ MPa}) for SPECTROM-32.
By setting the shear modulus at or near zero, the element has no shear strength and the thin
interface material (infinitesimal shear modulus) provides for frictionless relative displacement of
the adjoining materials. The resulting deformations can result in artificially large normal stress
components; however, the stresses are distributed over an infinitesimal area, and the resulting
force unbalance is negligible.
2.4 Thermal Structural Modeling

In the Benchmark II heated problem and the simplified heated room calculation, the presence of the heat source requires that the thermal and structural aspects be coupled. The structural calculations are affected in two ways. Temperature changes result in thermal loads from thermal expansion that must be applied to the structure at the appropriate times. Also, the creep strain increments are affected by temperature changes because the creep strain rate is temperature-dependent.

SPECTROM-32 and **SPECTROM-333** use the uncoupled, quasi-static theory of thermoelasticity which assumes that the heat conduction problem can be solved separately. For these two codes, temperature fields are typically supplied by the heat transfer program **SPECTROM-41** (Svalstad, 1989). Different meshes were used for the thermal and structural analyses because the thermal problem requires that the boundaries be further removed than the structural problem to eliminate the boundary influence on the computed temperatures. Interpolation of temperatures from the thermal mesh to the structural mesh was accomplished with the data transfer program **MERLIN** (Gartling, 1981). **MERLIN** produces a data file containing the interpolated temperatures at the nodes for the structural mesh at the supplied times. Thus, the nodal temperatures and corresponding times are simply read by **SPECTROM-32** and **SPECTROM-333** from a peripheral storage device. **SPECTROM-333** uses linear interpolation for times that are not in the temperature data file, and **SPECTROM-32** uses a three-point Lagrangian interpolation scheme for times not available in the temperature data file.

2.5 Verification Problem

As a finite-strain verification problem for **SPECTROM-32** and **SPECTROM-333**, a simple shear problem presented by Taylor and Flanagan (1987) was selected, which was originally presented by Dienes (1979). This problem was selected for presentation because it serves to point out the symptoms that can occur because of a deficiency in the Jaumann stress rate (Dienes, 1979; Taylor and Flanagan, 1987; Roy et al., 1992) and presents the solution using the Green-Naghdi rate of Cauchy stress. Therefore, the problem provides an excellent check of the finite-strain capability and the implementation of the Green-Naghdi rate of Cauchy stress in the programs.

One four-noded element measuring 1 m by 1 m was selected for the **SPECTROM-32** and **SPECTROM-333** solutions to this problem. The element was pinned along the bottom edge. Kinematic displacements in the x-direction were specified for the top two nodes with no normal
displacement specified in the y-direction. Thus, the unit block was placed in simple shear. The
block was deformed a total of 400 percent engineering shear strain in the final configuration. The
material was specified as elastic with Young’s modulus and Poisson’s ratio equal to 1.2 MPa and
0.2, respectively, which yields a shear modulus of 0.5 MPa.

The analytical solution given by Dienes (1979) using the Green-Naghdi rate of Cauchy stress
is shown in Figure 2-1 as the solid lines. Curves for the shear (upper curve) and normal stress
(lower curve, $\sigma_{xx} = -\sigma_{yy}$) are given with the SPECTROM-32 results plotted as circles and the
SPECTROM-333 results plotted as diamonds. The SPECTROM-32 and SPECTROM-333 results are plotted
at different shear strains for clarity. Excellent agreement exists between the analytical and finite
element codes’ solutions with results from both codes within 0.3 percent of the analytical
solution.
Figure 2-1. Comparison of SPECTROM-32 and SPECTROM-333 results with the analytical solution for the simple shear problem.
3.0 PROBLEM DESCRIPTIONS

Analyses of three well-defined boundary value problems were performed using SPECTROM-32 and SPECTROM-333. For the three problems, plane strain and symmetry assumptions are made to model the regular arrays of long drifts using a single half-room. Two of the problems are described by Krieg et al. (1980) and were used in the WIPP Benchmark II study. Benchmark II involves two room configurations, an isothermal room and a heated room. The two rooms have different dimensions and are located at different depths in the stratigraphy. Both rooms are excavated instantaneously at time $t = 0$, and the time-dependent deformation of the surrounding medium is analyzed for a period of 10 years. The third problem (simplified heated room) is described by Munson and Morgan (1986) and was used in developing quality assurance methodology for nuclear waste repository design calculations. The room is excavated instantaneously at time $t = 0$ and deforms unheated for 6 months. At 6 months, a thermal load is applied to simulate the emplacement of heat-producing waste canisters beneath the floor of the room. The time-dependent deformation of the surrounding medium is analyzed for an additional 4.5-year period after application of the thermal load. Descriptions of the three boundary value problems are repeated below for completeness.

3.1 Benchmark II Isothermal Room Configuration

The two-dimensional, isothermal room configuration used in the benchmark calculations is shown in Figure 3-1. The temperature of the rock mass was assumed to be uniform and to remain at a constant 300 K. The vertical extremities of the configuration extend from a depth of 598.02 m to 706.77 m below the ground surface. The left and right boundaries are symmetry planes through the center of the room and through the center of the pillar between adjacent rooms, respectively. Mixed boundary conditions were imposed on these planes of symmetry permitting vertical motion but preventing horizontal motion. The horizontal distance between the left and right boundaries is 20.27 m. To prevent vertical motion, the top anhydrite layer was fixed along the line $598.02 \leq y \leq 602.59$ on the pillar centerline. The room is rectangular with a half-width of 5.03 m and a height of 3.96 m. The floor of the room is positioned at the 659.00-m level.

A lithostatic initial stress was assumed; i.e., $\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -0.021252y$, where y is depth in meters and stresses are in MPa. The rock above 598.02 m was replaced by a traction of 12.71 MPa acting downward on the top of the medium. The rock below 706.77 m was replaced by a traction of 15.00 MPa acting upward.
Figure 3-1. Benchmark II isothermal room configuration.
The WIPP stratigraphy shown in Figure 3-2 was simplified so that only four of the 10 clay seams were taken as active slide planes. The four active clay seams include the two clay seams immediately above the room and the two clay seams immediately below the room. The clay seams are located at depths of 642.98, 650.20, 661.02, and 669.10 m and are identified as SP #2 through SP #5 in Figure 3-2. Perfect slip was assumed for the clay seam; i.e., the coefficient of friction on the slide planes is zero. The WIPP stratigraphy shown in Figure 3-2 consists of layers of halite, argillaceous halite, anhydrite, polyhalite, and a layer consisting of 10 percent polyhalite and anhydrite mixed with 90 percent halite. This stratigraphy was proposed for the WIPP site and was established by Sandia and the WIPP Project Office Contractors in November 1979 (Morgan et al., 1981). Each of the layers was assumed to have an elastic deformation component. In addition, the halite, 10 percent polyhalite and anhydrite mixed with 90 percent halite, and argillaceous layers were assumed to have inelastic deformation components that obey a secondary creep law (Norton power law). A summary of the complete material characterization is given in Appendix A.

3.2 Benchmark II Heated Room Configuration

The two-dimensional, heated room configuration used in the benchmark calculations is shown in Figure 3-3. All boundary conditions, initial stresses, and body forces were the same as those for the isothermal room except for the bottom traction, which was 15.01 MPa instead of 15.00 MPa. This slight difference in the two cases is a result of the slightly larger extraction ratio for the isothermal room. The horizontal distance between the left and right boundaries is 22.86 m. The room is rectangular with a half-width of 2.29 m and a height of 4.57 m. The floor is positioned at the 652.00-m level. The heat source extends from a depth of 655.00 m to a depth of 656.83 m along the vertical centerline of the heated room. This heat source simulates canisters positioned at regular intervals beneath the floor. The waste was idealized as a plane source with no x-direction dimension. The source was modeled as one continuously distributed below the floor along the room centerline with a time-dependent output of

\[q = 169.5 \exp\left(-t/1.365 \times 10^9\right) \text{ [W/m]} \] (3-1)

where \(t \) is in seconds. This heat flux was uniformly distributed over the 1.83-m height of the source. This is approximately equal to an initial thermal power density of 30 kW/acre. The initial temperature of the rock mass was 300 K. Thermal radiation between the surfaces of the heated room was simulated by an artificial thermal material. The conductivity of this material was chosen such that a thermal calculation with conduction heat transfer in the room would produce the same temperatures around the room as a thermal calculation with radiation heat.
Figure 3-2. Stratigraphic details for the Benchmark II problem.
Figure 3-3. Benchmark II heated room configuration.
transfer. This thermal material has no structural properties. The thermal and mechanical properties of the different materials required for the Benchmark II heated problem are provided in Appendix A.

The same stratigraphy as that used in the isothermal problem was used in the heated problem. The stratigraphy was again simplified so that only four of the ten clay seams were taken as active slide planes. The four active clay seams include the two clay seams immediately above the heated room, the clay seam located at the center of the heated room, and the clay seam immediately below the heated room. The clay seams are located at depths of 638.86, 642.98, 650.20, and 661.02 m and are identified as SP #1 through SP #4 in Figure 3-2. Perfect slip was assumed for the clay seam; i.e., the coefficient of friction on the slide planes was taken to be zero. A summary of the complete material characterization is given in Appendix A.

3.3 Simplified Heated Parallel Problem Configuration

The two-dimensional, heated room configuration used in the secondary parallel calculation (Munson and Morgan, 1986) is shown in Figure 3-4. For the simplified heated parallel calculation, the stratigraphy shown in Figure 3-4 was simplified by replacing the anhydrite in the pillar with halite and by allowing no slip at the clay seam locations. The vertical extremities of the configuration extend 52.87 m above and 54.19 m below Clay G, the reference from which all vertical distances are measured. The left and right boundaries are symmetry planes through the center of the room and through the center of the pillar between adjacent rooms, respectively. Mixed boundary conditions were imposed on these planes of symmetry, permitting vertical motion but preventing horizontal motion. The horizontal distance between the left and right boundaries is 11.75 m. To prevent vertical motion, the top anhydrite layer was fixed along the line $52.87 \leq y \leq 49.38$ on the pillar centerline. The room is square with a half-width of 2.75 m and a height of 5.50 m. The floor is positioned 1.08 m below Clay G.

A traction of 13.57 MPa, which represents the weight of the overburden above the configuration, was applied to the top boundary. An average overburden density of 2,320 kg/m3 and a gravitational acceleration of 9.79 m/s2 were used to compute the weight of the overburden. An average density of 2,300 kg/m3 was used for all stratigraphic layers within the configuration to compute the bottom traction of 15.95 MPa. An initial hydrostatic stress state was specified that varied linearly with depth (i.e., $\sigma_{xz} = \sigma_{yy} = \sigma_{zz} = -0.022517y$ MPa plus the overburden pressure of -13.57 MPa, where y is depth in meters from the upper boundary of the model). Each of the layers was assumed to have an elastic deformation component. In addition, the halite
Figure 3-4. Stratigraphy and boundary conditions for the heated parallel structural calculation.
and argillaceous halite layers were assumed to have inelastic deformation components that obey the secondary creep law (Norton power law). The material models have the same form as those used for the Benchmark II problems; however, some of the material constants are different. The elastic and creep constants are given in Table 3-1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Elastic Constantsb</th>
<th>Creep Constantsc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ν</td>
<td>E (Pa)</td>
</tr>
<tr>
<td>Halite</td>
<td>0.25</td>
<td>3.10×10^{10}</td>
</tr>
<tr>
<td>Argillaceous Salt</td>
<td>0.25</td>
<td>3.10×10^{10}</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>0.35</td>
<td>7.51×10^{10}</td>
</tr>
<tr>
<td>Polyhalite</td>
<td>0.36</td>
<td>5.53×10^{10}</td>
</tr>
</tbody>
</table>

Table 3-1. Mechanical properties for the simplified heated parallel calculationa

a From Munson and Morgan (1986).
b Poisson's ratio, ν; Young's modulus, E; and coefficient of linear thermal expansion, α.
c See Appendix A for creep law description.

The initial temperature of the configuration was 300 K. The configuration includes an infinite volumetric heat source equivalent to the thermal power output of canister heaters placed below the floor. The canisters were assumed to exist in a square array about the centerline of the room with a 2.29-m spacing. The source is 2.316 m high and 0.61 m wide. The top of the heat source is 4.25 m below Clay G. The heater power was 0.470 kW per canister and had an assumed half-life of 30 years. The resulting thermal load is

$$q = 145.3 \exp(-7.327 \times 10^{-10} t)$$

where q is the volumetric heat-generation rate in W/m3 and t is time in seconds. The configuration remained at 300 K for 6 months, at which time the thermal load was applied.

The thermal properties of the various stratigraphic materials used in the thermal calculation of the simplified parallel problem are the same as those for halite. Heat transfer through the halite was modeled with a nonlinear thermal conductivity of the form
where \(k \) is the conductivity in W/m-K, \(\theta \) is the absolute temperature in Kelvin, and \(\lambda_o \) and \(\Gamma \) are material constants for halite. Thermal radiation between the surfaces of the heated room were simulated by an artificial thermal material. The conductivity of this material was chosen such that a thermal calculation with conduction heat transfer in the room produces the same temperatures around the room as a thermal calculation with radiation heat transfer. The thermal properties for halite and the "equivalent thermal material" are given in Table 3-2.

Table 3-2. Thermal properties for the simplified heated parallel calculation\(^a\)

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (\rho) kg/m(^3)</th>
<th>Specific Heat (C_p) J/kg-K</th>
<th>Thermal Conductivity Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halite</td>
<td>2,300</td>
<td>860</td>
<td>5.0, 1.14</td>
</tr>
<tr>
<td>"Equivalent Thermal Material"</td>
<td>1</td>
<td>1,000</td>
<td>50.0, 0.00</td>
</tr>
</tbody>
</table>

\(^a\) From Munson and Morgan (1986).

\(^b\) \(k = \lambda_o \left(\frac{300}{\theta} \right)^\Gamma \), where \(\theta \) is temperature in Kelvin, was used in the simplified heated parallel calculation. \(k = \lambda_o \left(\frac{\theta}{100} \right)^\Gamma \), which is incorrect, was used in the heated benchmark calculation because the incorrect form was specified in the initial benchmark problems.
4.0 COMPUTATIONAL RESULTS

The results for the Benchmark II isothermal and heated room problems and the simplified heated parallel problem are presented in this section. Comparison of the results predicted by SPECTROM-32 and SPECTROM-333 with results predicted by other independent researchers who participated in the Benchmark II exercise is provided. Because data are not readily available for all of the codes that participated in the Benchmark II exercise, a few selected results were digitized to provide a sample comparison. Specifically, the range in responses reported at 10 years by Morgan et al. (1981) for seven of the nine codes that participated in the Benchmark II exercise is presented in each of the figures provided. The results predicted by two of the nine codes (REM and STEALTH) were not used to determine the range of the responses in this report. The predicted results of these two codes were not used because they frequently predicted results which were not “typical” of the responses predicted by the seven other codes. The selected range of the responses reported by Morgan et al. (1981) are identified by the brackets (—) in the figures provided for the Benchmark II problems.

Vertical closure and horizontal displacement results predicted by two other codes are also provided for the Benchmark II problems. Namely, the results predicted by Biffle (1981) and Branstetter et al. (1981) using the finite-element codes JAC (Biffle and Blanford, 1994) and SANCHO (Stone et al., 1988), respectively, were selected for comparison. These codes were selected because they provide finite-strain solutions and have been used extensively to solve boundary value problems for the WIPP. For the simplified heated room calculation, the vertical closure history predicted by the SPECTROM codes are compared with the JAC and SANCHO predictions, which were digitized from the figures reported by Munson and Morgan (1986).

Even though the boundary value problems are well defined, the finite element mesh used and certain features of a finite element code can account for significant differences in the predicted responses. Table 4-1 identifies a few features of the finite element codes JAC, SANCHO, SPECTROM-32, and SPECTROM-333. As shown in Table 4-1, a direct integration solution method is used by SPECTROM-32, and SPECTROM-333 used the BFGS solution method. JAC and SANCHO use conjugate gradient and dynamic relaxation solution methods, respectively. The SPECTROM codes use a thin element with no shear strength to simulate a frictionless interface material while JAC and SANCHO use a master/slave algorithm. The number of nodes, type and number of elements, and degrees of freedom used for the Benchmark II problems and the simplified heated parallel problem are also given in Table 4-1. The meshes used by the SPECTROM-32 code contain significantly more degrees of freedom than the meshes used by the other codes.
Table 4-1. Features of finite element codes and mesh statistics

<table>
<thead>
<tr>
<th>Code</th>
<th>Nodes/Element</th>
<th>Int. Pts./Element</th>
<th>Solution Method</th>
<th>Slip Algorithm</th>
<th>Large Deformation</th>
<th>Large Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAC</td>
<td>9</td>
<td>9</td>
<td>Conjugate Gradient</td>
<td>Master/Slave</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SANCHO</td>
<td>4</td>
<td>4</td>
<td>Dynamic Relaxation</td>
<td>Master/Slave</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SPECTROM-32</td>
<td>8</td>
<td>4</td>
<td>Direct Integration</td>
<td>Thin Element</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SPECTROM-333</td>
<td>4</td>
<td>4/1(^b)</td>
<td>BFGS</td>
<td>Thin Element</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Mesh Statistics\(^a\) (Number of)

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Elements</th>
<th>Degrees of Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-889</td>
<td>I-160</td>
<td>I-1,494</td>
</tr>
<tr>
<td>H-940</td>
<td>H-175</td>
<td>H-1,475</td>
</tr>
<tr>
<td>P-NA</td>
<td>P-NA</td>
<td>P-NA</td>
</tr>
<tr>
<td>I-718</td>
<td>I-586</td>
<td>I-1,311</td>
</tr>
<tr>
<td>H-777</td>
<td>H-644</td>
<td>H-1,432</td>
</tr>
<tr>
<td>P-NA</td>
<td>P-NA</td>
<td>P-NA</td>
</tr>
<tr>
<td>I-2,437</td>
<td>764</td>
<td>I-4,700</td>
</tr>
<tr>
<td>H-2,875</td>
<td>906</td>
<td>H-5,550</td>
</tr>
<tr>
<td>P-2,886</td>
<td>909</td>
<td>P-5,568</td>
</tr>
<tr>
<td>I-837</td>
<td>I-764</td>
<td>I-1,585</td>
</tr>
<tr>
<td>H-985</td>
<td>H-906</td>
<td>H-1,868</td>
</tr>
<tr>
<td>P-989</td>
<td>P-909</td>
<td>P-1,874</td>
</tr>
</tbody>
</table>

\(^a\) I – Isothermal Benchmark II Problem, H – Heated Benchmark II Problem, P – Simplified Heated Parallel Problem.

\(^b\) Four integration points are used for the stiffness and one integration point for the constitutive models.
4.1 Benchmark II Isothermal Room Results

4.1.1 Structural Mesh Statistics

The required mesh statistics include a figure showing the undeformed mesh, the number of nodes in the mesh, the number and type of elements, the number of degrees of freedom, and the minimum and maximum node spacing. The number of nodes, the number and type of elements, and the number of degrees of freedom for the two meshes are given in Table 4-1. The undeformed mesh used by SPECTROM-32 is shown in Figure 4-1. The SPECTROM-333 mesh is identical to the SPECTROM-32 mesh except that it contains four-node elements and has thinner slide line elements. Eighteen 0.00003-m-thick slide line elements were used to model each clay seam in the SPECTROM-333 mesh, while 0.0002-m-thick slide line elements were used in the SPECTROM-32 mesh. The minimum thickness which could be obtained by the mesh generation program used to create the SPECTROM-32 mesh was 0.0002 m. The thickness of the slide line elements is excluded from the following discussion on node spacing.

The mesh spacing in the horizontal direction was determined by the room location. The smallest horizontal node spacing in the SPECTROM-333 mesh was 0.47 m between the nodes on the rib boundary (x = 5.03 m) and the adjacent nodes in the pillar. The largest horizontal node spacing in the SPECTROM-333 mesh was 3.03 m between nodes on the vertical centerline of the pillar and the adjacent nodes. Similarly, the minimum and maximum horizontal spacing between any two nodes in the SPECTROM-32 mesh were 0.24 and 1.52 m, respectively.

The mesh spacing in the vertical direction was determined by the room location and the WIPP stratigraphy. Because each anhydrite layer was modeled with one element vertically, the minimum spacing of 0.22 m in the SPECTROM-333 mesh occurred in the anhydrite layer located from 642.76 m to 642.98 m beneath the ground surface. The minimum vertical node spacing around the room was 0.31 m immediately below the room. The maximum vertical node spacing was 8.32 m in the argillaceous halite below the top anhydrite layer modeled. Similarly, the minimum and maximum vertical spacing between any two nodes in the SPECTROM-32 mesh were 0.11 m and 4.16 m, respectively.

4.1.2 Displacement Histories and Deformed Mesh

The benchmark comparisons call for two displacement histories: (1) vertical closure history of the room and (2) horizontal displacement history of the rib midpoint. Vertical closure is the
Figure 4-1. **SPECTROM-32** structural mesh and stratigraphy used for the Benchmark II isothermal room calculation.
relative vertical displacement of the point initially located at (0,655.04) with respect to the point initially located at (0,659.00). Figure 4-2 shows the room vertical closure history predicted by SPECTROM-32 and SPECTROM-333. The vertical closure after 10 years predicted by SPECTROM-32 is 0.738 m. The vertical closure after 10 years predicted by SPECTROM-333 is 0.802 m. As indicated by the vertical bar at 10 years, the vertical closures predicted by SPECTROM-32 fall within the range predicted by the other codes; however, the SPECTROM-333 results are slightly greater than the upper range at 10 years. The range bar includes seven of the nine code results examined in the Benchmark II study (Morgan et al., 1981) where the two codes that were clearly giving unrepresentative results were eliminated.

Horizontal displacement histories at the center of the rib are shown in Figure 4-3. The negative values indicate that the ribs are moving inward toward the center of the room. The rib horizontal displacements predicted by SPECTROM-32 and SPECTROM-333 at 10 years are -0.385 m and -0.387 m, respectively. The horizontal displacement predicted by SPECTROM-32 and SPECTROM-333 fall within the range of displacements predicted by the codes used by other independent researchers, as shown by the vertical bar at 10 years.

The SPECTROM-32 and SPECTROM-333 deformed meshes (deformation to geometry ratio of 1:1) at 10 years are shown in Figures 4-4 and 4-5, respectively. Each eight-node element used in the SPECTROM-32 structural mesh was subdivided (for postprocessing purposes) into 4 four-node elements in Figure 4-4. The mesh distortion is greatest in the corners of the room and the roof sag is noticeably larger than the floor heave. This unsymmetric vertical closure is mainly caused by the stiff anhydrite layer beneath the room, which restricts the vertical movement of the floor.

While no attempt is made here to directly compare the deformed meshes from the various calculations, the following observations can be made based on published results. Morgan et al. (1981) presented the deformed mesh resulting from the preliminary MARC analysis performed by Sandia National Laboratories referred to as MARC(S). The MARC(S) deformed mesh was selected as the representative deformed mesh for presentation because the MARC(S) closure histories were located near the middle of the clustering of results. Comparison of Figures 4-4 and 4-5 to the MARC(S) deformed mesh and the JAC and SANCHO deformed meshes presented by Biffle (1981) and Branstetter et al. (1981), respectively, shows that qualitatively similar deformation patterns are produced by all of the codes.

Perhaps the most important comparison in the benchmark problems is the predicted closure of the room. The SPECTROM-32 room closure results fall within the range of results predicted by the other representative participants of the benchmark exercise. The SPECTROM-333 vertical
Figure 4-2. Vertical closure histories for the Benchmark II isothermal room.
Figure 4-3. Midpillar horizontal displacement histories for the Benchmark II isothermal room.
Figure 4-4. SPECTROM-32 Benchmark II isothermal room deformed mesh at 10 years.
Figure 4-5. SPECTROM-333 Benchmark II isothermal room deformed mesh at 10 years.
closure results are 4 percent greater at 10 years than the maximum vertical closure result predicted by the representative codes that participated in the benchmark exercise. The most probable cause for this discrepancy is mesh refinement and the fact that SPECTROM-333 uses only one integration point for the constitutive models. In general, the difference in the closure response between SPECTROM-32 and SPECTROM-333 is less than the predicted differences between SANCHO and JAC or SANCHO and SPECTROM-32. The SPECTROM-333 predicted midpillar horizontal displacement of the isothermal room is virtually the same as SPECTROM-32, which is less than 5 percent greater than JAC.

4.1.3 Relative Displacements Across the Slide Lines

Relative horizontal displacements across the four active slide lines are plotted as a function of horizontal position in Figures 4-6 through 4-9. Relative displacements across the slide lines are provided at 1, 2, and 10 years. Relative displacement was calculated as the displacement of the node on the bottom surface of the slide line interface minus the displacement of the corresponding node on the top surface. A positive value for relative displacement implies that the bottom surface moves horizontally to the right with respect to the top surface. The motion is reversed for negative values of relative horizontal displacement.

In general, SPECTROM-32 and SPECTROM-333 predicted more displacement across the four slide lines than most of the other representative codes that participated in the benchmark, as shown by the vertical bars for 10 years in the figures. The variation in results reflects the different methods used by the participants in the benchmark exercise to model the active slide lines. The SPECTROM codes employ a special property element to model frictionless slip. The slightly larger displacements predicted across the slide lines by the SPECTROM codes compared to the other codes, which participated in the benchmark exercise, can be attributed to the different slide line algorithm. The relative slip predicted by SPECTROM-333 across the two slide lines below the room resulted in curves which are not smooth at 10 years (see Figures 4-7 and 4-8). The relative displacement across these two slide lines is much less than the relative displacement across the slide lines above the room. A mesh with greater refinement would probably result in a smoother curve; however, this irregularity was not investigated further.
Figure 4-6. Relative slip across the 642.98-m slide line for the Benchmark II isothermal room.
Figure 4-7. Relative slip across the 650.20-m slide line for the Benchmark II isothermal room.
Figure 4-8. Relative slip across the 661.02-m slide line for the Benchmark II isothermal room.
Figure 4-9. Relative slip across the 669.10-m slide line for the Benchmark II isothermal room.
4.1.4 Stress Profiles

Four stress profiles are provided for the isothermal room. Figure 4-10 is a plot of the effective stress near the pillar midheight along the line \(y = 657.25 \) m, as a function of horizontal position at 1, 2, and 10 years. The pillar midheight is located at \(y = 657.02 \) m; however, no stress data were available at that location. Therefore, the element immediately below the pillar midheight was used to provide the stress information from both the SPECTROM-32 and SPECTROM-333 calculations. The stress results at the four integration points in the SPECTROM-32 elements were averaged to compare with the stresses at the single integration point in the SPECTROM-333 elements. Effective stress is defined in terms of the deviatoric stress as given in Appendix A (Equation A-5). Figure 4-11 is similar to Figure 4-10 except vertical stress is plotted as a function of horizontal position. Figure 4-12 is a plot of the effective stress along the vertical centerline of the room \((x = 0)\) for values of \(y \) between 648.2 m and 667.5 m at 1, 2, and 10 years. Figure 4-13 is the same as Figure 4-12 except that the horizontal stress is presented instead of the effective stress. In general, the stress measures predicted by SPECTROM-32 and SPECTROM-333 fall within the range of stresses predicted by other codes that participated in the benchmark exercise (Morgan et al., 1981). The SPECTROM-333 predictions of stress in the anhydrite beds are less than those predicted by the other codes. This discrepancy may be caused by the single integration point used for the constitutive models by SPECTROM-333. However, this discrepancy was not investigated further.

4.2 Benchmark II Heated Room Results

4.2.1 Temperature Calculations

The temperature calculation was performed using the finite element code SPECTROM-41 (Svalstad, 1989). The finite element mesh used for the thermal calculation is shown in Figure 4-14. The horizontal extremities are the same as those used for the structural analysis; however, the vertical extremities of the thermal mesh extend from 523.00 m to 806.77 m below the ground surface. The vertical extent of the model was extended to assure that the temperatures at these boundaries would remain constant during the analysis and, therefore, would not affect the solution. The mesh contains 1,301 nodes and 400 eight-node quadrilateral elements. The initial temperature was prescribed as 300 K, and all boundaries were specified as adiabatic. The thermal load was modeled as a very thin volumetric heat generating source. The initial heat output (see Equation 3-1) was approximately equal to a thermal power density of 7.5 W/m² (30 kW/acre) and was uniformly distributed over the 1.83-m height of the source. The thermal
Figure 4-10. Effective stress profiles through the pillar of the Benchmark II isothermal room.
Figure 4-11. Vertical stress profiles through the pillar of the Benchmark II isothermal room.
Figure 4-12. Effective stress profiles along the vertical centerline of the Benchmark II isothermal room.
Figure 4-13. Horizontal stress profiles along the vertical centerline of the Benchmark II isothermal room.
Figure 4-14. Thermal mesh used for the Benchmark II heated room configuration.
response was computed for a 10-year simulation period. Temperatures from the thermal calculation were interpolated for the structural meshes using MERLIN (see Section 2.4). The interpolated temperatures were used as input to the SPECTROM-32 and SPECTROM-333 structural calculations.

Temperature histories are specified in the benchmark problem formulation for the floor midpoint, midpoint of the heat source, and for the point where the horizontal centerline of the heated room intersects the pillar vertical centerline. These temperature histories are shown in Figure 4-15.

4.2.2 Structural Mesh Statistics

Mesh statistics of the heated benchmark problem are given in Table 4-1. The SPECTROM-32 undeformed structural mesh is shown in Figure 4-16. The SPECTROM-333 mesh is identical to the SPECTROM-32 mesh shown in Figure 4-16 except for the thickness specified for the slide line elements and element type specified. The SPECTROM-333 mesh consists of 985 nodes, 840 four-node plane strain quadrilaterals, 66 slide line elements, and 1,868 degrees of freedom. The SPECTROM-32 mesh consists of 2,875 nodes, 840 eight-node plane strain quadrilaterals, 66 slide line elements, and 5,550 degrees of freedom.

The minimum horizontal node spacing was 0.29 m and the maximum horizontal spacing was 3.86 m in the SPECTROM-333 structural mesh. Excluding the slide lines, a minimum vertical node spacing of 0.22 m and a maximum node spacing of 5.54 m were used for the mesh. Similarly, the minimum spacing of the nodes for the SPECTROM-32 mesh is 0.11 m vertically and 0.145 m horizontally with a maximum node spacing of 2.77 m vertically and 1.93 m horizontally.

4.2.3 Displacement Histories and Deformed Mesh

Figure 4-17 shows the vertical room closure history for the heated room. After 10 years, the vertical closures predicted by SPECTROM-32 and SPECTROM-333 are 0.493 m and 0.495 m, respectively. The vertical closures predicted by SPECTROM-32 and SPECTROM-333 fall within the range of displacements predicted by other codes that participated in the benchmark exercise. In the heated Benchmark II problem, results from six codes are presented by Morgan et al. (1981), and one of these codes (STEALTH) was unrepresentative and eliminated.
Figure 4-15. Temperature histories for the Benchmark II heated room configuration computed with SPECTROM-41.
Figure 4-16. SPECTROM-32 structural mesh and stratigraphy used for the Benchmark II heated room calculation.
Figure 4-17. Vertical closure histories for the Benchmark II heated room.
Figure 4-18 shows the horizontal displacement at the top of the anhydrite layer where it intersects the room. After 10 years, the horizontal displacements predicted by SPECTROM-32 and SPECTROM-333 are –0.043 m and –0.054 m, respectively. The SPECTROM-32 results fall within the range predicted by other representative codes; however, the SPECTROM-333 displacements are slightly greater than the results reported by Morgan et al. (1981). This small discrepancy may be caused by the single integration point used for the constitutive models by SPECTROM-333; however, this discrepancy was not investigated.

The SPECTROM-32 and SPECTROM-333 deformed meshes (deformation to geometry ratio of 1:1) at 10 years are shown in Figures 4-19 and 4-20, respectively. Each eight-node element used in the SPECTROM-32 structural mesh was subdivided (for postprocessing purposes) into 4 four-node elements in Figure 4-20. The presence of the slide line and anhydrite in the center of the room is reflected in the displacement discontinuity in the room rib. The anhydrite layer restricts the horizontal displacement of the halite layer above the slide line; however, the halite below the slide line is free to flow into the room.

While no attempt is made here to directly compare the deformed meshes from the various calculations, the following observations can be made based on published results. As was done for the isothermal room problem, Morgan et al. (1981) presented the deformed mesh resulting from the preliminary MARC analysis for the heated room problem performed by Sandia National Laboratories. Comparison of Figures 4-19 and 4-20 to the MARC(S) deformed mesh and the JAC and SANCHO deformed meshes presented by Biffle (1981) and Branstetter et al. (1981), respectively, shows that qualitatively similar deformation patterns are produced by all of the codes.

4.2.4 Relative Displacements Across the Slide Lines

Relative horizontal displacements across the four active slide lines are plotted as a function of horizontal position in Figures 4-21 through 4-24. Relative displacements across the slide lines are provided at 1, 2, and 10 years. These displacements were calculated in the same manner as the relative displacements for the isothermal room. In general, the results predicted by SPECTROM-32 fall within the range of displacements predicted by other participants in the benchmark exercise. However, the relative horizontal displacements across the slide lines predicted by SPECTROM-333 tend to be slightly greater than those predicted by most of the other participants in the benchmark exercise.
Figure 4.18. Midpiller displacement histories for the Benchmark II heated room.
Figure 4-19. SPECTROM-32 Benchmark II heated room deformed mesh at 10 years.
Figure 4-20. SPECTROM-333 Benchmark II heated room deformed mesh at 10 years.
Figure 4-21. Relative slip across the 638.86-m slide line for the Benchmark II heated room.
Figure 4-22. Relative slip across the 642.98-m slide line for the Benchmark II heated room.
Figure 4-23. Relative slip across the 650.20-m slide line for the Benchmark II heated room.
Figure 4-24. Relative slip across the 661.02-m slide line for the Benchmark II heated room.
4.2.5 Stress Profiles

Four stress profiles are provided for the heated room. Figure 4-25 is a plot of the effective stress in the anhydrite layer along the line $y = 650.07$ m as a function of horizontal position at 1, 2, and 10 years. The pillar midheight is located at $y = 649.72$ m. The stresses at the four integration points in the SPECTROM-32 elements were averaged to compare with the stresses at the single integration point in the SPECTROM-333 elements. Figure 4-26 is similar to Figure 4-25 except vertical stress is plotted as a function of horizontal position. Figure 4-27 is a plot of the effective stress along the vertical centerline of the room ($x = 0$) for values of y between 635.81 m and 661.02 m at 1, 2, and 10 years. Figure 4-28 is the same as Figure 4-27 except that the horizontal stress is presented instead of the effective stress. The stresses predicted by SPECTROM-32 and SPECTROM-333 appear to follow the same trend and generally fall within the range of stresses predicted by other participants for the benchmark problem. Similar to the isothermal calculation, the stresses predicted by SPECTROM-333 in the anhydrite are less than those predicted by the other representative codes.

4.3 Simplified Heated Room Calculation Results

4.3.1 Thermal Calculations

The temperature calculation for the simplified heated room calculation problem was performed using the finite element code SPECTROM-41 (Svalstad, 1989). The finite element mesh used for the thermal calculation is shown in Figure 4-29. The horizontal mesh extremities are the same as those used for the structural analysis; however, the vertical extremities of the thermal mesh extend 100 m above and below the vertical boundaries specified for the structural analysis. The thermal mesh was extended to assure that the temperature at these boundaries would remain constant during the analysis and, therefore, would not affect the solution. The mesh contains 1,301 nodes and 400 eight-node quadrilateral elements. The initial temperature was prescribed as 300 K and all boundaries were specified as adiabatic. The model was to remain at this temperature for 6 months, at which time the thermal load was applied. The thermal response was computed for a 4.5-year simulation period after application of the thermal load. Temperatures from the thermal calculation were interpolated for the structural mesh using MERLIN (see Section 2.4). The interpolated temperature distributions were used as input to the SPECTROM-32 and SPECTROM-333 structural calculations. Temperature histories are provided in Figure 4-30 at the floor midpoint, roof midpoint, midheight of the rib, and center of the heat source. Previous
Figure 4-25. Effective stress profiles through the pillar of the Benchmark II heated room.
Figure 4-26. Vertical stress profiles through the pillar of the Benchmark II heated room.
Figure 4-27. Effective stress profiles along the vertical centerline of the Benchmark II heated room.
Figure 4-28. Horizontal stress profiles along the vertical centerline of the Benchmark II heated room.
Figure 4-29. Thermal mesh used for the simplified heated room configuration.
Figure 4-30. Temperature histories for the simplified heated room configuration computed with SPECTROM-41.
comparisons of the SPECTROM-41 and COYOTE (Munson and Morgan, 1986) temperature results show that the computed temperatures were within 1 percent of each other.

4.3.2 Structural Mesh Statistics

The SPECTROM-32 undeformed mesh used for the simplified heated room calculation is shown in Figure 4-31. The SPECTROM-333 mesh is identical to the SPECTROM-32 mesh except that it is comprised of four-node elements whereas the SPECTROM-32 mesh contains eight-node elements. The SPECTROM-333 mesh consists of 989 nodes, 909 four-node plane strain quadrilaterals, and 1,874 degrees of freedom. The SPECTROM-32 mesh consists of 2,886 nodes, 909 eight-node plane strain quadrilateral elements, and 5,568 degrees of freedom. None of the clay seams were modeled as slide lines for this analysis.

The minimum horizontal node spacing in the SPECTROM-333 mesh was 0.28 m, and the maximum horizontal spacing was 1.74 m. Because each anhydrite layer was modeled with one element vertically, the minimum vertical node spacing of 0.08 m occurred in the anhydrite layer located from 16.33 m to 16.41 m beneath Clay G. The maximum vertical node spacing was 4.84 m. Similarly, the minimum node spacing in the SPECTROM-32 mesh is 0.04 m vertically and 0.14 m horizontally with a maximum node spacing of 2.42 m vertically and 0.87 m horizontally.

4.3.3 Displacement Histories and Deformed Mesh

Figure 4-32 shows the predicted vertical room closure history for the simplified heated room calculation. After 5 years, the vertical closures predicted by SPECTROM-32 and SPECTROM-333 are 1.13 and 1.14 m, respectively. The JAC, SANCHO, and SPECTROM-32 (small strain) predictions of vertical closure reported by Munson and Morgan (1986) were digitized and included in Figure 4-32 for comparative purposes. The JAC computer code has both large deformation and small deformation capabilities and was used to verify that large deformation effects were important for the heated parallel calculation. The JAC, SANCHO, SPECTROM-32, and SPECTROM-333 large deformation solutions resulted in less vertical closure than the JAC and SPECTROM-32 small deformation solutions, which is typical for compressional-type problems with large deformations.

Figure 4-33 shows the horizontal displacement history predicted at the pillar midheight for the simplified heated room calculation. SPECTROM-32 predicted a midpillar displacement of −0.671 m compared to −0.670 m predicted by SPECTROM-333 at 5 years. Results were not
Figure 4-31. SPECTROM-32 structural mesh and stratigraphy used for the simplified heated room configuration.
Figure 4-32. Vertical closure histories for the simplified heated room problem.
Figure 4-33. Midpillar displacement history for the simplified heated room.
reported by Munson and Morgan (1986) for the midpillar horizontal displacement. However, the SPECTROM-32 small deformation solution was obtained from a supplemental calculation and included in Figure 4-33. Similar to the vertical closure history, the large deformation solutions predicted less displacement than the small deformation solution.

The SPECTROM-32 and SPECTROM-333 deformed meshes at 5 years are shown in Figures 4-34 and 4-35, respectively. Because of the large deformation occurring in this problem, both the SPECTROM-32 and SPECTROM-333 deformed meshes show material overlap in the corners of the room. The SANCHO and JAC codes contain surface contact algorithms that prevent surface penetrations; whereas, neither SPECTROM-32 nor SPECTROM-333 contain algorithms of this type. Although Munson and Morgan (1986) do not provide deformed meshes or discussion of the contacting surfaces, neither the SANCHO nor the JAC calculations are believed to have had the contact algorithms activated for the simplified heated room calculation, which could have reduced the magnitude of their computed deformations.

4.3.4 Stress Profiles

Four stress profiles are provided for the simplified heated room calculation. Figure 4-36 is a plot of the effective stress as a function of horizontal position along pillar midheight ($y = 1.67$ m) at 1, 2, and 5 years. The stress results at the four integration points in the SPECTROM-32 elements were averaged to compare with the stresses at the single integration point in the SPECTROM-333 elements. Figure 4-37 is similar to Figure 4-36 except vertical stress is plotted as a function of horizontal position. Figure 4-38 is a plot of the effective stress along the vertical centerline of the room ($x = 0$) for values of y between -10.00 and 15.00 m at 1, 2, and 5 years. Figure 4-39 is the same as Figure 4-38 except that the horizontal stress is presented instead of the effective stress. Stress history results from other codes are not available for comparative purposes for this problem.
Figure 4-34. SPECTROM-32 simplified heated room deformed mesh at 5 years.
Figure 4-35. SPECTROM-333 simplified heated room deformed mesh at 5 years.
Figure 4-36. Effective stress profiles through the pillar of the simplified heated room.
Figure 4-37. Vertical stress profiles through the pillar of the simplified heated room.
Figure 4-38. Effective stress profiles along the vertical centerline of the simplified heated room.
Figure 4-39. Horizontal stress profiles along the vertical centerline of the simplified heated room.
5.0 CONCLUSIONS

The SPECTROM-32 and SPECTROM-333 finite strain solutions to three boundary value problems are presented: (1) the WIPP Benchmark II isothermal room problem, (2) the WIPP Benchmark II heated room problem, and (3) the simplified heated calculation. A brief summary of the results obtained and observations made for the three analyses follow.

5.1 Benchmark II Isothermal Room

The SPECTROM-32 predictions of the isothermal room vertical closures and horizontal displacements at the midpoint of the rib fall within the range of closures and displacements predicted by other researchers using other codes (e.g., Morgan et al., 1981). The SPECTROM-333 prediction of vertical closure is greater than that predicted by the other representative codes; however, the predicted midpillar horizontal displacement falls within the range predicted by the other codes. The SPECTROM-32 vertical closure is approximately 9 percent greater than the JAC solution and 32 percent greater than the SANCHO solution at 10 years. The vertical closure predicted by SPECTROM-333 at 10 years is approximately 19 and 44 percent greater than the JAC and SANCHO solutions, respectively. The midpillar displacements predicted by SPECTROM-32 and SPECTROM-333 are approximately 4 and 26 percent greater than JAC and SANCHO solutions, respectively. The stresses predicted by SPECTROM-32 and SPECTROM-333 appear to follow the same trend and generally fall within the range of stresses predicted by other representative codes. The SPECTROM-333 predictions of stress in the anhydrite beds are less than those predicted by the other codes. This discrepancy was not investigated but is probably the result of the single integration point used for the constitutive model integration. Results of the relative displacement across the four active slide lines do not seem unusual even though they tend to be larger than most of the results reported by Morgan et al. (1981).

5.2 Benchmark II Heated Room

Stress measures and relative slip across the active slide lines predicted by SPECTROM-32 and SPECTROM-333 for the heated room seem reasonable and appear to be in close agreement with the results reported by Morgan et al. (1981) for this problem. The vertical closure predicted by SPECTROM-32 and SPECTROM-333 are approximately 5 percent greater than the JAC solution and approximately 10 percent greater than the SANCHO solution at 10 years for this problem. The
SPECTROM-32 horizontal displacement at 10 years is approximately 10 percent greater than the JAC and SANCHO solutions; whereas, the SPECTROM-333 solution is approximately 38 percent greater than the JAC and SANCHO solutions. The vertical room closure predicted by SPECTROM-333 falls within the range predicted by other codes for the heated room. In contrast, the horizontal displacement at the rib midpoint predicted by SPECTROM-333 is slightly greater than the displacements predicted by other representative codes. These observations are interesting since the vertical and horizontal closure trends predicted by SPECTROM-333 for the heated room are essentially the opposite of the isothermal room closure trends when compared to other codes. The reasons for these differences were not investigated. However, a reasonable assumption points to mesh refinement and the fact that SPECTROM-333 uses only one integration point for the constitutive models as possible causes. The SPECTROM-32 vertical closure and horizontal displacement results fall within the range of results reported by Morgan et al. (1981).

5.3 Simplified Heated Room

Because the simplified heated problem was used to isolate possible sources of error and resolve discrepancies encountered during the parallel calculations, few results were reported by Munson and Morgan (1986) that could be used for comparison. Figure 4-32 presents a comparison of the vertical closure histories predicted by the finite element codes SPECTROM-333, JAC, SANCHO, and SPECTROM-32. Munson and Morgan (1986) noted that the small deformation solutions are approximately 20 percent higher than the large deformation solutions after 4.5 years, which indicates that large deformations are occurring and that a large deformation capability is needed for problems of this type. The SPECTROM-32 and SPECTROM-333 large deformation solutions are greater than the SANCHO and JAC large deformation solutions. After 5 years, the SPECTROM-32 large deformation solutions are approximately 7 and 15 percent greater than the SANCHO and JAC large deformation solutions, respectively. The SPECTROM-333 solution is less than 1 percent greater than the SPECTROM-32 large deformation solution. The 5 percent difference between the SANCHO and JAC large deformation solutions at 5 years was largely attributed to inaccuracies resulting from the selection of time step sizes and tolerances for the SANCHO solution. Munson and Morgan (1986) noted that by decreasing the time step size and convergence tolerances, the SANCHO solution was obtained to within 1 percent of the JAC solution. Possible causes for the differences between the JAC and SPECTROM large deformation solutions were not investigated. However, one may hypothesize that changes in mesh refinement, time step size, and convergence tolerances could decrease the differences in the computed results. Other displacement and stress results reported for the two Benchmark problems were not available for
the simplified heated room problem for comparison; however, these results predicted by SPECTROM-32 and SPECTROM-333 are presented in Section 4.3 for future reference.

5.4 Summary

SPECTROM-32 and SPECTROM-333 are demonstrated to have the nonlinear modeling capabilities needed for solving complex problems commonly analyzed for the WIPP program. The problems presented emphasize most of the nonlinear features known to influence the mechanical behavior of the repository. One objective of this report was to compare the results predicted by the SPECTROM codes with the results predicted by a number of independent researches using different computer codes. Agreement among several sets of results does not mean that they represent the correct solution; it merely indicates the probable correct solution. If the results differ significantly, potential reasons for the discrepancies can be identified and investigated. Results predicted by other codes were presented as a range at a given time and location. Results from two of the codes (REM and STEALTH) were not used for comparison because they were unrepresentative of the range of results predicted by the other seven codes. Although difficult to quantify, the term agreement (as used here) is not limited to mean that the results fall within the range of results predicted by other codes. In fact, none of the codes participating in the benchmark exercise predicted results that fall within the range of results predicted by the other codes for all of the results presented. Stated differently, if each of the codes’ results were plotted against the range of results provided by the remaining codes, every code would fall outside of the range of results more than once. Therefore, assessment of the agreement of results must include all results collectively and not any one result by itself. Overall, reasonable agreement was obtained for the SPECTROM-32 and SPECTROM-333 solutions for the benchmark problems based on a global comparison with the results obtained by other codes which participated in the benchmark exercise.

Perhaps the most important response of the benchmark problems and the simplified heated room is the predicted closure of the room. The SPECTROM-32 room closure results fall within the range of results predicted by the other participants of the benchmark exercise. The SPECTROM-333 closure results are typically at or slightly greater than the upper end of the range of results. However, the SPECTROM-333 results appear reasonable with the percentage difference in the closure response between SPECTROM-32 and SPECTROM-333 typically less than the predicted differences between SANCHO and JAC or SANCHO and SPECTROM-32. The most probable cause for this discrepancy is mesh refinement and the fact that SPECTROM-333 uses only one integration point for the constitutive models.
In general, SPECTROM-32 and SPECTROM-333 predicted slightly more slip across the side lines than most of the other codes that participated in the WIPP Benchmark II exercise. There was little standardization among the participants of the WIPP Benchmark II exercise with six different slide line algorithms being used. This produced a significant range of slide line response. The slightly larger displacements predicted across the slide lines by the SPECTROM codes in comparison to the other codes’ results can be attributed to the different slide line algorithm.
6.0 REFERENCES

APPENDIX A: MATERIAL CHARACTERIZATION
The purpose of the benchmark exercise was to compare the results obtained directly with different codes. Direct comparison is difficult unless identical problems are performed. Characterization of the different materials used in the benchmark problems are explicitly described by Krieg et al. (1980) and are repeated here for completeness.

The stratigraphy in which both the isothermal and heated rooms are located consists of halite, argillaceous halite, anhydrite, polyhalite, 10 percent anhydrite-polyhalite mixed with 90 percent halite, and clay arranged as shown in Figure 3-2. This stratigraphy is for the upper level at the WIPP site and was established by Sandia National Laboratories and the WIPP Project Office contractors in November 1979 (Krieg et al., 1980). The static and dynamic coefficients of friction for the clay seams for the WIPP Benchmark II problems were chosen to be zero. The mechanical properties of the other layers have the values reported by Krieg et al. (1980). These properties are summarized in Table A-1. The creep constants, D, n, and Q in Table A-1, are constants in the secondary creep law description that follows (Equation A-3).

Table A-1. Mechanical properties for the Benchmark II problem* (upper level, nominal 655 m)

<table>
<thead>
<tr>
<th>Material</th>
<th>Elastic Constants</th>
<th>Creep Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v</td>
<td>E (Pa)</td>
</tr>
<tr>
<td>Halite (H)</td>
<td>0.25</td>
<td>2.48×10^{10}</td>
</tr>
<tr>
<td>Argillaceous Salt</td>
<td>0.25</td>
<td>2.48×10^{10}</td>
</tr>
<tr>
<td>10% A–P, 90% H</td>
<td>0.25</td>
<td>2.65×10^{10}</td>
</tr>
<tr>
<td>Anhydrite (A)</td>
<td>0.33</td>
<td>7.24×10^{10}</td>
</tr>
<tr>
<td>Polyhalite (P)</td>
<td>0.33</td>
<td>7.24×10^{10}</td>
</tr>
<tr>
<td>Clay Seam Friction Slide Line: μ static = μ dynamic = 0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* From Krieg et al. (1980).

b Poisson’s ratio, v, and Young’s modulus, E.
The thermal properties of the various layers are presented in Table A-2. These properties have been provided by Krieg et al. (1980) and were obtained from material property tests performed on salt samples from the WIPP site. Most of the tests were performed on halite. Very few tests were performed on the other materials, so the properties in Table A-2 for all materials except halite are estimates for the benchmark calculations but will be refined by further investigations. The thermal properties of the “equivalent thermal material” to simulate radiation across the room are also given in Table A-2. These properties have been provided by Krieg et al. (1980).

Table A-2. Thermal properties for the Benchmark II problema

<table>
<thead>
<tr>
<th>Material</th>
<th>Density ρ kg/m3</th>
<th>Specific Heat Capacity C_p J/kg-K</th>
<th>Coefficient of Linear Thermal Expansion, α K$^{-1}$</th>
<th>Thermal Conductivity Parameters λ_o W/m-k</th>
<th>Γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halite (H)</td>
<td>2,167</td>
<td>860</td>
<td>45.0×10^{-6}</td>
<td>5.0</td>
<td>1.14</td>
</tr>
<tr>
<td>Argillaceous Salt</td>
<td>2,167</td>
<td>860</td>
<td>40.0×10^{-6}</td>
<td>4.0</td>
<td>1.14</td>
</tr>
<tr>
<td>10& A-P, 90% H</td>
<td>2,167</td>
<td>860</td>
<td>42.7×10^{-6}</td>
<td>5.0</td>
<td>1.14</td>
</tr>
<tr>
<td>Anhydrite (A)</td>
<td>2,167</td>
<td>860</td>
<td>20.0×10^{-6}</td>
<td>4.5</td>
<td>1.14</td>
</tr>
<tr>
<td>Polyhalite (P)</td>
<td>2,167</td>
<td>860</td>
<td>24.0×10^{-6}</td>
<td>2.0</td>
<td>1.00</td>
</tr>
<tr>
<td>“Equivalent Thermal Material”</td>
<td>1</td>
<td>1,000</td>
<td>—</td>
<td>50.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

a From Krieg et al. (1980).

b $k = \lambda_o(\theta/300)\Gamma$ where θ is temperature in Kelvin.

NOTE: The equation in Table A-2 expressing thermal conductivity for the various materials was incorrect when specified for the Benchmark II problems. The correct equation is

$$k = \lambda_o \left(\frac{300}{\theta}\right)^\Gamma.$$

However, the incorrect equation was used in the SPECTROM-32 and SPECTROM-333 solutions of the first two Benchmark II calculations so that a direct comparison could be made with previous solutions in which the incorrect equation was used.
The creep law used for the Benchmark II exercise is that adopted by Herrmann, Wawersik, and Lauson to describe the secondary creep of southeastern New Mexico salt (Herrmann et al., 1980). Primary creep is not considered in this problem. The constitutive model follows.

The strain rate is characterized by the following:

\[\dot{\epsilon}_{ij} = -\frac{\nu}{E} \hat{\sigma}_{kk} \delta_{ij} + \left(\frac{1 + \nu}{E} \right) \sigma_{ij} + \dot{\epsilon}_{ij}^c \]

(A-1)

where

\[\dot{\sigma}_{ij} = \text{Components of the stress rate tensor} \]
\[\nu = \text{Poisson’s ratio} \]
\[E = \text{Young’s modulus} \]
\[\delta_{ij} = \text{Kronecker delta} \]
\[\dot{\epsilon}_{ij} = \text{Creep strain rate given by:} \]

\[\dot{\epsilon}_{ij}^c = \left| \dot{\epsilon}_{kli} \right| \frac{\sigma'_{ij}}{\sigma'_{mn}} \]

(A-2)

where

\[\sigma'_{ij} = \text{Components of the deviatoric stress tensor.} \]

and the stress and strain tensor norms used here are defined as

\[\left| \dot{\epsilon}_{ij}^c \right| = \left(\dot{\epsilon}_{ij}^c \dot{\epsilon}_{ij}^c \right)^{1/2} \]
\[\left| \sigma'_{ij} \right| = \left(\sigma'_{ij} \sigma'_{ij} \right)^{1/2} \]

For this case, in which only secondary (steady state) creep is considered, the magnitude of the creep strain rate can be expressed in terms of the effective creep strain rate \(\dot{\epsilon} \), or the effective stress, \(\bar{\sigma} \), as follows:
\[|\dot{\varepsilon}_{ij}| = \sqrt{1.5} \dot{\varepsilon} = \sqrt{1.5} D \bar{\sigma}^n \exp \left(\frac{-Q}{R\theta} \right) \]

(A-3)

\(\dot{\varepsilon} \) is defined as:

\[\dot{\varepsilon} = \left(\frac{2}{3} \varepsilon_{ij} \dot{\varepsilon}_{ij} \right)^{\frac{1}{n}} \]

(A-4)

while \(\bar{\sigma} \) is

\[\bar{\sigma} = \left(\frac{3}{2} \sigma_{ij} \sigma_{ij} \right)^{\frac{1}{n}} \]

(A-5)

\(D, n = \) Constants determined from data analysis

\(\theta = \) Temperature, K

\(Q = \) Effective activation energy, cal/mole

\(R = \) Universal gas constant, 1.987 cal/mole-K.

Values for the parameters are given in Table A-1.
References for Appendix A

DISTRIBUTION

Federal Agencies:

U.S. Department of Energy (6)
Office of Civilian Radioactive Waste Management
Attn: Deputy Director, RW-2
Associate Director, RW-10/50
Office of Program and Resources Management
Office of Contract Business Management
Director, RW-22
Analysis and Verification Division
Associate Director, RW-30
Office of Systems and Compliance
Associate Director, RW-40
Office of Storage and Transportation
Director, RW-4/5
Office of Strategic Planning and International Programs
Office of External Relations
Forrestal Building
Washington, DC 20585

U.S. Department of Energy
Albuquerque Operations Office
Attn: National Atomic Museum Library
P.O. Box 5400
Albuquerque, NM 87185-5400

U.S. Department of Energy
Research & Waste Management Div.
Attn: Director
P.O. Box E
Oak Ridge, TN 37831

U.S. Department of Energy (6)
Carlsbad Area Office
Attn: V. Daub
G. Dials
M. McFadden
R. Lark
R. Bills
J. A. Mewhinney
P.O. Box 3090
Carlsbad, NM 88221-3090

U.S. Department of Energy
Attn: E. Young
Room E-178
GAO/RCED/GTN
Washington, DC 20545

U.S. Department of Energy
Office of Environmental Restoration and Waste Management
Attn: J. Lytle EM-30
Forrestal Building
Washington, DC 20585-0002

U.S. Department of Energy (3)
Office of Environmental Restoration and Waste Management
Attn: M. Frei, EM-34, Trevion II
Washington, DC 20585-0002

U.S. Department of Energy
Office of Environmental Restoration and Waste Management
Attn: S. Schneider, EM-342, Trevion II
Washington, DC 20585-0002

U.S. Department of Energy (2)
Office of Environment, Safety and Health
Attn: C. Borgstrom, EH-25
R. Pelletier, EH-231
Washington, DC 20585
John O. Blomeke
720 Clubhouse Way
Knoxville, TN 37909

Sue B. Clark
University of Georgia
Savannah River Ecology Lab
P.O. Drawer E
Aiken, SC 29802

Konrad B. Krauskopf
Department of Geology
Stanford University
Stanford, CA 94305-2115

Della Roy
Pennsylvania State University
217 Materials Research Lab
Hastings Road
University Park, PA 16802

David A. Waite
CH₂M Hill
P.O. Box 91500
Bellevue, WA 98009-2050

Thomas A. Zordon
Zordon Associates, Inc.
3807 Edinburg Drive
Murrysville, PA 15668

Libraries:

Thomas Brannigan Library
Attn: D. Dresp
106 W. Hadley Street
Las Cruces, NM 88001

Government Publications Department
Zimmerman Library
University of New Mexico
Albuquerque, NM 87131

New Mexico Junior College
Pannell Library
Attn: R. Hill
Lovington Highway
Hobbs, NM 88240

New Mexico State Library
Attn: N. McCallan
325 Don Gaspar
Santa Fe, NM 87503

New Mexico Tech
Martin Speere Memorial Library
Campus Street
Socorro, NM 87810

WIPP Public Reading Room
Carlsbad Public Library
101 S. Halagueno Street
Carlsbad, NM 88220

Foreign Addresses:

Studiecentrum Voor Kernenergie
Centre d'Énergie Nucléaire
Attn: A. Bonne
SCK/CEN Boeretang 200
B-2400 Mol
BELGIUM

Atomic Energy of Canada, Ltd.
Whiteshell Laboratories
Attn: P. Goodwin
Pinewa, Manitoba
CANADA ROE 1L0
Francois Chenevier (2)
ANDRA
Route du Panorama Robert Schumann
B.P.38
92266 Fontenay-aux-Roses, Cedex
FRANCE

Jean-Pierre Oliver
OECD Nuclear Energy Agency
Division of Radiation Protection and Waste Management
38 Boulevard Suchet
75016 Paris
FRANCE

Claude Sombret
Centre d'Études Nucléaires de la Vallée Rhone
CEN/VALRH0
S.D.H.A. B.P. 171
30205 Bagnols-Sur-Ceze
FRANCE

Commissariat a L'Énergie Atomique
Attn: D. Alexandre
Centre d'Études de Cadarache
13108 Saint Paul Les Durance Cedex
FRANCE

Bundesanstalt für Geowissenschaften und Rohstoffe
Attn: M. Langer
Postfach 510 153
D-30631 Hannover
GERMANY

Bundesministerium für Forschung und Technologie
Postfach 200 706
5300 Bonn 2
GERMANY

Institut für Tiefslagerung
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig
GERMANY

Gesellschaft für Anlagen und Reaktorsicherheit (GRS)
Attn: B. Baltes
Schwertnergasse 1
D-50667 Cologne
GERMANY

Physikalisch-Technische Bundesanstalt
Attn: P. Brenneke
Postfach 3345
D-3300 Braunschweig
GERMANY

Shingo Tashiro
Japan Atomic Energy Research Institute
Tokai-Mura, Ibaraki-Ken, 319-11
JAPAN

Netherlands Energy Research Foundation ECN
Attn: L.H. Vons
3 Westerduinweg
P.O. Box 1
1755 ZG Petten
THE NETHERLANDS

Svensk Kärnfräslemsforsörjning AB
Attn: F. Karlsson
Project KBS (Kärnbrukslesakerhet)
Box 5864
S-102 48 Stockholm
SWEDEN

Nationale Genossenschaft für die Lagerung Radioaktiver Abfälle (2)
Attn: S. Vomvoris
P. Zuidema
Hardstrasse 73
CH-5430 Wettingen
SWITZERLAND

AEA Technology
Attn: J.H. Rees
D5W/29 Culham Laboratory
Abingdon, Oxfordshire OX14 3DB
UNITED KINGDOM
AEA Technology
Attn: W.R. Rodwell
044/A31 Winfrith Technical Centre
Dorchester, Dorset DT2 8DH
UNITED KINGDOM

AEA Technology
Attn: J.E. Tinson
B4244 Harwell Laboratory
Didcot, Oxfordshire OX11 ORA
UNITED KINGDOM

D.R. Knowles
British Nuclear Fuels, plc
Risley, Warrington, Cheshire WA3 6AS
1002607 UNITED KINGDOM

Internal:

<table>
<thead>
<tr>
<th>MS</th>
<th>Org.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0827</td>
<td>1502</td>
</tr>
<tr>
<td>1324</td>
<td>6115</td>
</tr>
<tr>
<td>1320</td>
<td>6119</td>
</tr>
<tr>
<td>1322</td>
<td>6121</td>
</tr>
<tr>
<td>1322</td>
<td>6121</td>
</tr>
<tr>
<td>1322</td>
<td>6121</td>
</tr>
<tr>
<td>1395</td>
<td>6700</td>
</tr>
<tr>
<td>1335</td>
<td>6705</td>
</tr>
<tr>
<td>1395</td>
<td>6707</td>
</tr>
<tr>
<td>1335</td>
<td>6000</td>
</tr>
<tr>
<td>1395</td>
<td>6701</td>
</tr>
<tr>
<td>1341</td>
<td>6306</td>
</tr>
<tr>
<td>1328</td>
<td>6342</td>
</tr>
<tr>
<td>1395</td>
<td>6743</td>
</tr>
<tr>
<td>1341</td>
<td>6347</td>
</tr>
<tr>
<td>1341</td>
<td>6348</td>
</tr>
<tr>
<td>1328</td>
<td>6741</td>
</tr>
<tr>
<td>1330</td>
<td>6352</td>
</tr>
<tr>
<td>1330</td>
<td>6352</td>
</tr>
<tr>
<td>9018</td>
<td>8523-2</td>
</tr>
<tr>
<td>0899</td>
<td>13414</td>
</tr>
<tr>
<td>0619</td>
<td>12615</td>
</tr>
<tr>
<td>0100</td>
<td>7613-2</td>
</tr>
</tbody>
</table>

P.J. Hommert
P.B. Davies
E.J. Nowak
J.R. Tillerson
D.E. Munson (10)
F.D. Hansen
P. Brewer
M. Chu
M. Marietta
W. Weart
L. Shephard
A.L. Stevens
D.R. Anderson
V.H. Slaboszewicz
D.R. Schafer
J.T. Holmes
H.N. Jow
C.B. Michaels (2)
NWM Library (20)
Central Technical Files
Technical Library (5)
Print Media
Document Processing for
DOE/OSTI (2)