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ABSTRACT

Waste packages for a U.S, nuclear waste repository are
required to provide reasonable assurance of maintaining
substantially complete containment of radionuclides for 300 to
1000 years after closure. The waiting time to failure for
complex failure processes affecting engineered or manufactured
systems is often found to be an exponentially-distributed
random variable. Assuming that this simple distribution can be
used to describe the behavior of a hypothetical single barrier
waste package, calculations presented in this paper show that the
mean time to failure (the only parameter needed to completely
specify an exponential distribution) would have to be more than
107 years in order to provide reasonable assurance of meeting
this requirernent. With two independent barriers, each would
need to have a mean time to failure of only 103 years to provide
the same reliability. Other examples illustrate how multiple
barriers can provide a strategy for not only achieving but
demonstrating regulatory compliance.

INTRODUCTION

The development of "long-lived” or "robust”  waste
packages has been advocated by the Nuclear Waste Technical

Review Board! (NWTRB) and others as a means of ensuring
that the expected performance of a potential high-level nuclear
waste repository at the Yucca Monntzin Site will not only meet
regulatory requirements but will be acceptable to the public as
well. The fundamenta! premise underlying this position was

stated by the NWTRBL: "... the Board believes that well-
engineered structures are less variable and more predictable
than rock formations [emphasis added]." This is certainly true
when the time span for the prediction is comparable to the
period over which we have experience with similar structures.

However, a unique feature common to all potential nuclear
waste repositories is that confidence must be developed in the
accuracy of performance predictions spanning 10,000 years or
more. This time period is far longer than human history and
about two orders of agnitude greater than the engineering
experience span for most anthropogenic materials. Much of
society's confidence in engineered structures is based upon
observations of how well they perform their intended functions
over their design lifetimes. Unfortunately, there are no such
obscrvations even for many of the component materials
considered for engineered barriers, and certainly not for entire
systems resemnbling a repository. Hence, an engineered barrier

system (EBS) alone cannot be expected to instill the required
degree of regulatory and public confidence in overall repository
performance.

This is, of course, precisely the reason for proposing
geologic repositories in the first place: if the scientific and
engineering community, as well as the general public, were
confident that the behavior of engineered materials and systems
could be predicted with sufficient accuracy for the required
period of time, then a pure "engineering fix" could be devised
and licensed. No one (to the author's knowledge) seriously
advocates a pure engineering solution to the nuclear waste
problem; it is recognized by the NWTRB! and generally that the
combination of geologic and engineered barrier systems
(especially if a more robust EBS is included) could reduce the
overall uncertainty in repository performance predictions.

In order to stimulate the conceptual development of a more
robust EBS, the EBS Panel of the NWTRB posed the following
four questions in January 1990 {[emphasis added]:

1. Can a waste package be developed that can be
demonstrated to have reasonable assurance of lasting 10,000
years?

2. What ambient conditions or factors need to be modified
for a 10,000-year waste package to be attained if this, indeed, is
not yet possible?

3. How would the probability of attaining a 10,000-year
waste package be influenced if the as-emplaced heat generation
rate of individual canisters were minimized?

4. How does the siting of the repository in an unsaturated
zone, as opposed 10 a saturated zone, affect attaining a 10,000-
year waste package?

The crucial problem in addressing these questions --
perhaps it is even the crucial problem for the entire nuclear
waste program -- is the demonstration with reasonable
assurance that the repository or any part of it will perform as
intended. Developing the necessary scientific understanding of
natural, altered, and manufactured components' behavior under
current and projected conditions, performing the subsequent
engineering design work, and actually constructing the
repository and its subsystems are all familiar tasks, distinguished
only by the physical and temporal scale of the undertaking (and
perhaps by the rigor and pervasiveness of Quality Assurance
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requirements) from other large projects. What seems more
daunting is making it all plausible when were done. The
considerations below are intended to suggest an approach which
may ultimately help improve the credibility of more
sophisticated and detailed calculations.

WAITING TIMES

In very general terms, & repository comprises a series of
natural geologic, altered zone, and engineered "barriers.” The
unexcavated host rock, beyond the range of significant
repository-induced changes in such propertics as temperature
and water content, comprises the natural geologic barrier
system. The engineered barrier system, or EBS, includes
components traditionally regarded as part of the waste package,
such as the waste form itself, the pour cannister (for glass waste)
or the fuel cladding (for spent fuel), and the actual emplacement
cannister (which may itself have several layers of different
materials), The altered zone includes unexcavated rock with
properties that have cither been deliberately changed during
repository construction and pre-closure operations (e.g., by
changing the local chemistry) or that have been changed
incidentally as a result of repository construction and operation
(e.g., by the drying of surrounding rock due to heat from
radioactive decay and the movement of ventilation air),

Each barrier introduces a delay or waiting time into a
sequence of events that >egins with waste emplacement and
ends with release of a detectable quantity of a particular
radionuclide to the acceusible environment,

For example, consider a particle of liquid water starting at
some point above the repository. The first waiting time is the
time it takes this particle to reach the altered zone surrounding
the repository (note that the time could be infinite if the flow
path does not intersect any radionuclide inventory). Assuming it
reaches the altered zone, it must then traverse it and contact the
next barrier, which might be the waste package. It then has to
penetrate one or more layers of the cannister, then the cladding
or the pour caunister (depending upon the waste package design
and the waste form), dissolve or entrain some radionuclide(s),
work its way back through the EBS and the altered zone,
traverse the vadose zone below the repository, and so on.

The sum of all these waiting times for one such sequence is
one value (i.e, realization) of the release time for a single
radionuclide "particle;" it will be a random variable, because
each individual term is a random variable. The ensemble of all
such release time realizations for the entire initial inventory of
radionuclides is directly related to the cumulative distribution
function for radionuclide release. In essence, the calculation of
repository performance reduces to the calculation of the
probability distribution for a sum of waiting times, each of
which is a random variable with an unknown probability
distribution. From this perspective, a repository's sole purpose
is to provide an acceptable distribution function for this sum --
that is, the probability of release for the entire period of
regulatory concern must remain extremely low.

At present, not even the form of the probability distribution
is known for any of these waiting times ; a fortiori, we know
neither the nature or number of the parameters of these
distributions, their values, or how these values might change
with environmental conditions. In particular, nothing is

presently known about the failure time distribution for any part
of the engineered barrier system. It is this fact that makes the
four questions raised by the NWTRB so extraordinarily difficult
to answer., As will be illustrated below for multiple barriers
assumed to obey a simple exponential failure time distribution,
the demonstration of compliance with the regulatory
requirement of "substantially complete containment” for periods
of 300 to 1000 years will push the state-of-the-art in engineering
and the frontiers of knowledge in science. Extending the
prediction time to periods of 10,000 or more years, as required
to defend “robust" designs, may be beyond our capabilities.

EROBABILITIES

Consider a single system which can fail at any time ¢ > 0.
To be specific, the system is considered to be the waste package
component in a multiple-component EBS; however, it should be
noted that a precise operational definition of "failure" for a
waste package is far from obvious and may even depend upon
the mode of release (i.e., vapor phase versus liquid phase
transport of radionuclides). Is a single corrosion pit resulting in
a 5 micron hole through a cannister wall a "failure,”" or should
there be more holes or larger holes before it is considered to
have failed? The classical definition given by Harr2, that failure
denotes "...the inability of a systern to perform its intended
function,” would in the case of the EBS mean that the EBS
either has ceased to provide ‘“substantially complete
containment”" or to comply with the controlled release
requirement» which limits the fractional release for each
radionuclide to 10-3 of its inventory remaining 1000 years after
closure. Unfortunately, substantially complete containment is
not defined precisely, hence we do not have a complete
quantitative regulatory criterion for determining when failure
has oc urred.

The following discussion assumes that failure can be
defined and that the resulting definition distinguishes
unambiguously between a waste package that has failed and one
that has not failed. The definition or even detection of the
failure of an engineered component in a repository environment
is by no means a trivial exercise, but further consideration of
these subjects is beyond the scope of this paper.

Let f(t) represent the probability density function (pdf) for
the random variable T, where T is the waiting time to failure for
a single system being observed. In other words, the system is
observed starting at time 0, and T is the time that has elapsed
when failure occurs. Then f(f)d: is the probability that the
observed value of T lies between ¢ and ¢ + dt.  F(¢) is the
cumulative distribution function (edf) and is defined by the
integral:

t
FO = [ fu)du.
¢

The edf is the probability that failure occurs on or before
time t. Note that 1 - F(f) is the probability that failure occurs
after time ¢, i.e., the probability of survival until time 1. Harr2
refers to this function as the reliability function, R(s). It is
sometimes useful to define the hazard function, h(f) = f(f)/R(1);




it is a conditional pdf, in that h(f)d! is the conditional probability
that the system will fail in the time interval from ¢ to t+dt, given
that it survived until time .

If N waste packages are emplaced at time O, and their
failure probabilities are independent (i.e., common disasters
such as meteorite impacts on a repository are not considered),
then n, the total number of survivors at time f, is a discrete
random variable obeying the familiar binomial distribution for
the probability of n successes in N Bernoulli trials when the
probability of snccess on each trial is R(#):

PlmN,R(1)] = NI/IN-n)!anl]o[R@0)]H[F()N-7)

The mean number of survivors is N«R(f), and the variance
is NuF(O)xR(0).

The probability that all N members survive until time ¢

(equivalent to the event that no failures occur) is [R(t)]N. Note
that, for a repository designed to hold 70,000 metric tons of
waste with about 2 metric tons per waste package, N is on the
order of 35,000. For R(r) equal to 0.9999, the probability that

no failwes occur By time ¢ is 10-1-52, or approximately 0.03,
and the mean (or expected) number of failures is 3.5.

Using a Bayesian approach, Harr? has shown that a
sequence of 18 successes with no failures is the expected result
for R = 0.95, and 98 successes with no failures corresponds to a
reliability of 0.99. Since twenty to a hundred is probably the
right order of magnitude for the number of actual similar

systems in civil engineering practice, Harr2 argues that 0.95 to
0.99 is the expected range of reliability for most civil
engineering systems. To demonstrate an expected value of
reliability of 0.9999, we would have to have a sequence of 9998
successes urbroken by a single failure. Achieving reliability
this close to unity for Jong periods of time is possibly beyond the
capabilities of engineering.

Of course, if the time is short enough, R(#) will be
arbitrarily close to unity, since it must equal unity at t=0. R(f) is
a monotonically decreasing function of time, asymptotically
approaching zero as ¢ tends to infinity. Without introducing
explicit functions for the pdf and cdf, there is no way to
determine the time at which the reliability function decreases to
0.9999, and hence we cannot compare the results given above
with time-dependent regulatory requirements without assuming
a probability distribution. In a following section, these
calculations and comparisons are performed for a simple but
commonly-observed failure-time distribution introduced in the
next section.

THE EXPONENTIAL WAITING - TIME DISTRIBUTION

In order to gain some insight into the demands placed on
waste package performance testing and analysis by regulatory
requirements, a specific function must be assumed for the pdf.
Perhaps the simplest pdf for failure time is the exponential
distribution:

£(f) = Ae~M

The single parameter A is the reciprocal of the Mean Time
To Failure, or MTTF. The cdf is F() = 1 - e'M, and the
reliability function is just M, Not only is this distribution
simple, it often provides a good representation for failure time

probabilities when failures are rare events resulting from the
complex interaction of many processes and mechanisms.

Examples of observed failure time statistics 'successfully
described by this distribution are given in Figures 1 and 2,
respectively, for the burnout of radar tnbes (from Belz4) and for
the collapse of oil-well casing due tc salt-flow loading (from
Chesnut and Goldberg?). The points are the observed reliability
values and the lines show the reliability function for exponential
distributions with the observed mean failure times.

Iumﬂme Distribution for V805 Radar Tubes
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Figure 1. Comparison of observed reliability data for V805 Radar
Tubes with the exponential distribution. A total of 903 failures was

observed, and the mean time to failure was 179.3 hours?,

| Litetime Distribution for Oil-Well Casing
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Figure 2. Comparison of observed reliability data for casing in oil
wells on the Cedar Creek Anticline, Montana, with the exponential
distribution. A total of 15 failures was observed, and the mean time

1o failure was 96.7 monthsS.

These examples clearly must involve radically different
failure mechanisms and processes, yet the distributions of failure
times exhibit the same simple exponential form -- only the



MTTF is different. All the complexity one can envision from
such sources as different mechanisms, environmental factors,
manufacturing differences, material behavior, etc, merely affects
the value of this single parameter. Precisely how the MTTF
depends upon “deterministic” variables must be determined
either by experiments combined with mechanistic theoretical
analysis, or by statistical analysis of a sufficiently large number
of failures.

In probability theory, the exponential distribution arises in
the study of Poisson processes, in which the probability that an
event will occur in the time interval from ¢ to t+d¢ is proportional
to dt (for sufficiently small d) and independent of ¢. The
condition of time-independence means that there is no memory,
or, in other words, no aging, so it is somewhat surprising that the
exponential distribution fits the data so well in the two examples
shown.

Perhaps the applicability of Poisson processes can be
rationalized, albeit not proven, by considering a conceptual
model for system failure known as the "bathtub distribution." In
Figure 3 (see Harr2), the hazard function h(z) is sketched as a
function of time.

| Bathtub Hazard Distribution |

}Hazald Function. hlm

Time

Figure 3, Sketch of the "Bathtub Distribution” for the hazard
fuiiction vs, time. The early decreasing-hazard part is the "breaking-
in" period, the central constant pan is the period of design service
Litie, and the late increasing-hazard part is the "wearing-omt” period.

At early time (the "breaking-in" period), h(t) is expected to
dc: rease with time. Intuitively, a high early failure rate would
be expected to arise from defects in design, manufacturing, or
corstruction. The late-time part of the "bathtub" shows an
inci+:asing hazard as components wear out. The central part of
the {istribution, with a constant value for h(s), is mathematically
equivalent to an exponential distribution for the waiting time
betwe:'n failures. The constant value of the hazard function in
the < :ntral part of the "bathtub" is equal to the reciprocal
MT:; F, as shown below:

fi1) = Ae-M
R(!) = M

h() = f(O/R() = A

The waste package program will attempt to minimize the
duration of the "breaking-in" period by stringent quality control
and rigorous inspection, thereby hoping to eliminate most of the
early failures and mitigate their consequences during the pre-
closure period of repository operation, ldeally, this would allow
the period of constant hazard to extend beyond the time period
of interest, be it 300-1,000 years, 10,000 years, or longer. If this
were achieved, the late-time period of increasing hazard need
not be included in the analysis, since all of the design service
life would have expired before it starts,

The achievement of constant hazard, and proving that it has
been achieved, is a great scientific and engineering challenge.
The analyses presented in the remainder of this paper assume
that the challenge can be met, and we can accordingly assume
the exponential distribution to be a reasonable functional form
for the failure time distribution. The MTTF offers a reasonable
and simple definition for the lifetime of a waste package or any
other component of the EBS, whether or not the failure time
distribution is exponcntial. Similar analyses can be performed
for other distributions, such as the Weibull, but other parameters
in addition to the mean would have 1o be specified in order to
produce any quantitative results. If warranted by experience or
theory, these extensions can easily be made.

SINGLE BARRIERS

We now assume that the exponential waiting time
distribution can be used to describe the reliability of a
hypothetical single-barrier waste package. The formulas given
above for the pdf and edf of the exponential distribution, along
with the formulas for the binomial distribution, were used to
calculate numerical values for the reliability, R(f), the expected
number of survivors, E(nt), and the probability of 100%
survival, PN(?) at t=40 years after emplacement and at 1=1,000

years after emplacement, for assumed values of the MTTF
equal to 1,000, 10,000, 100,000, 1,000,000, and 10,000,000
years. The choices of 40 and 1,000 years were made to
represent, respectively, the time from waste emplacement to
repository closure and the period during which regulations
require "substantially complete containment” of radionuclides
within the EBS.

Table 1. Reliability, expected number of survivors, and probability
of 100% survival at 40 and 1,000 years for an initial population size
of 35000 waste packages, with assumed values of the Mean Time to
Failure ranging from 1,000 to 10,000,000 Years.

t = 40 years t = 1000 years

MTTF [R [Em [Py R ECHREY

100y |09608 33628 0608 03679 12876 1515200
by  [09%3 34930 15608 09048 3166 ()50
105y 0996 34986 15608 09900 35652 152
105y 099996 34999 15608 0990 35965 ;152
107y |>099999 349999 10608 099990 349965 ;-152

These results are summarized in Table 1. For all tabulated
values of MTTF less than or equal to 100,000 years, the
probability of observing at least one failure in 40 years (this
probability is one minus the probability of 100% survival) is
essentially unity, virtually assuring that at least one failure
would occur within this relatively short time even for very
"robust” designs.



Slightly less than 37% of the 1,000-year-MTTF packages
would survive for 1,000 years, but almost 99% of the 100,000-
year-MTTF packages would. Even for a MTTF of 1,000,000
years, the probability of at least one failure in the first 40 years
is 0.75, and 0.1% of these packages would be expected to fail by
1,000 years after emplacement.

Note that the expected number of survivors at 40 years and
1,000 yeass in Table 1 is just the reliability function evaluated at
40 and 1,000, respectively, times the initial number of packages
(35,000). The interested reader will note that only the
1,000,000-year-MTTF package has a reliability exceeding
0.9999 at 40 years, and its reliability is only 0.9990 at 1,000
years. Recalling that R(1) = e"M, setting ¢ = 1,000, R(1) = 0.9999
and solving for A, one can show that attaining "four-nines"
reliability with a single barrier subject to a Poisson failure
process would require 8 MTTF of 107 years! Values for this
MTTF are also given in Table 1.

EERFORMANCE CRITERIA

The discussion of single barrier failure probabilities clearly
indicates the need for a quantitative measure of performance.
There is no way to determine what value of reliability we need
at any given time unless we consider the consequences of
failure. After the period of ‘“substantially complete
containment” of 300 to 1,000 years, the regulatory requirement

is to limit the fractional release of each radionuclide to 103 per
year of its inventory remaining at 1,000 years after closure,

For the sake of this discussion, "substantially complete
containment” will be defined arbitrarily by limiting the
individual radionuclide fractional release rate during the first
1,000 years to a fraction, €, of the controlled release allowance

of 10-5 per year. We may require & to be small, say 0.01, 0.001,
or whatever seems both tolerable and achievable, but it cannot
be set at zero if the repository program is to have any credibility.
If we let 8y (t) be the cumulative release of radionuclide species

k, normalized by its 1,000-year inventory, and p(f) be the
allowed release requirement, then the system succeeds so long
as

S(t) < p(r), where

Py = 10-5g1, for O<r<t,,

= 10-3¢ te+ 10-3(s-tp), for £ > tg,

and t¢ is the time for which substantially complete containment
is required (usually set to 1,000 years).

Consider the case of a single barrier and a radionuclide with
decay constant o. As discussed in a previous section, AeMdy

is the probability that the barrier will fail at a time between ¢
and ¢ + dt; the total repository inventory, Iy(f) of radionuclide &
is

Iy = Ik(())e'ak’ ,

where 1;(0) is the total inventory of radionuclide k at
emplacement. Then if we asswne that failure means that release
of radionuclides from the EBS occurs, the release from time ¢ to
time ¢ + df is just Mk(l)e'udt. This expression can be integrated
and then divided by the inventory at /., to obtain the normalized
cumulative release function 8 (¢):

(1) = [M(oy, + A)JeOkte[] - (0t + M,

By expanding the last term at early time and retaining the
linear term in ¢, the following approximation can be derived:

By (1) = AeOkley,

Upon comparing this result with the "required" release rate
p(f) for t<t, and recalling that 1/A = MTTF , one can derive the

following inequality:
MTTF > (1/g)1050%t:

Suppose we set € to 0.01 (i.e., the release rates during the
substantially complete containment period are required to be 1%
or less of the controlled-release rates). Note that the
exponential term in the inequality is greater than unity for any
non-zero value of the decay constant, and that it approaches
unity for very long-lived radionuclides (the term is
approximately 1.001 for a decay constant of 10-6), By setting
the exponential term equal to unity, we obtain a lower bound for

the MTTF of 107 years. Smaller values of €, or consideration

of shorter-lived radionuclides, would require an even longer
MTTF.

This analysis shows that we may indeed need a reliability

* function of 0.9999 at 1,000 years after placement in order to

accomplish "substantially complete containment." Failures in
such a robust single-barrier package would be so rare that they
would almost certainly not be observed even in 100 years of
testing. Even if such a package could be built, there is no
apparent way to test it and demonstrate its performance,

MULTIPLE BARRIERS

The specific results given above obviously depend strongly
upon the assumed form of the failure pdf, but the difficulty of
testing a long-lived system remains even for other distributions.
The shape of the exponential distribution is particularly
troublesome, since the highest rate of failure occurs near time
zero (even though the hazard function is constant), requiring an
extraordinarily large MTTF to control early releases. There is
some hope, however, if we consider multiple independent
barriers. An important result of probability theory is the Central
Limit Theorem,which, under fairly broad conditions, assures us
that the sum of n independent random variables (no matter how
they are distributed) is a random variable whose distribution
approaches the normal (or Gaussian) distribution for sufficiently
large values of n. The mean of the resulting normal distibution
is the sum of the means of the individual variables and its
variance is the sum of the variances.



What this means is that if we add up enough independent
exponentially-distributed failure times -- one for each barrier --
the resulting total failure time will have its mode (i.e., maximum
in the pdf) shifted away from the origin -- in fact it will be
approximately centered on the mean, and the probability of
failure at early time will be drastically reduced in comparison
with the exponential distribution.

The pdf for the sum of n exponentially distributed variables
can be obtained as an explicit function of time, using the
characteristic function (cf) of the exponential distribution® and
the general result of probability theory that the ¢f of the sum of n
random variables is the product of the cfs of the individuat
variables (characteristic functions are similar to Laplace and
Fourier transforms in this respect). The cf, ¢,(1), for n

exponentially distributed random variables is

n
11).1
On(1) = 15~
" H Aj
j=

where t is (-1)1/2 and the reciprocal MTTF of variable j is 7‘3
Two cases have to be considered:

1. If the A; are all distinct, then the product can be

decomposed into a sum of terms, each of which is a coefficient
times the cf of an individual exponentially-distributed variable.
The coefficients can be expressed in terms of the )‘] using the

method of partial fractions.

2. If the 7»] are identically equal to a fixed value, A, for all j,
then the product is just ¢p(t) = (1 - 17/A)", which may be
recognized as the cf for a Pearson Type III distribution (the
Gamma distribution)6,

Of conrse, it would be possible to have a mixture of cases 1
and 2, with some variables having identical values of A and
others having distinct values. The simplest expressions result
for case 2, and will be used in the following analyses, since this
will adequately illustrate the value of using multiple barriers.

With an obvious change in notation, the pdf corresponding
to the cf for case 2 is found in Ref. 6, page 930:

fa(®) = [M(n- DI LM,
By integrating, the cdf and reliability function are obtained:

n-1

Fp()=1-eM gMjl = 1- Rp(t)
j=1

Note that these expressions reduce to the pdf and cdf,
respectively, for a single barrier when n = 1. Figure 4 shows
how the shape of the pdf changes as n increases. In Fig, 4, the
total mean failure time is kept constant at 1,000 years; hence,
each individual mean failure time is 1000/n and gets shorter as n
increases. As shown, the mode of the distribution shifts more

and more toward the mean with increasing n, and the
distribution also becomes more symmetric and more sharply
peaked about the mean, lending some graphic plausibility to the
operation of the Central Limit Theorem. Also, the area under
the curves from =0 to t=total MTTF is reduce as n increases --
i.e., the reliability at early time is increased relative to the single
barrier case.

IPDF for Multiple Exponential Barrlers
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Figure 4. Probability Density Functions (pdfs) for multiple barriers
having a constant total Mean Time to Failure of 1,000 years. Each
curve is labeled with the corresponding total number of barriers. The
wailing time distribution for each barrier is exponential, with MTTF
of 1,000/n.
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The analysis for the single-barrier normalized release of
radionuclides is easily extended by using the multiple-barrier
pdf in place of the single-barrier pdf. The resulting expression
is:

Bk (D) = [M(A + oy JPe0le( 1 - [e-(AHORE [(Avo)e]ifil]),

where the summation index j ranges from 0 to n-1, and n is the
total number of barriers.

This function and p(¢) were evaluated for ¢ ranging from 1
to 10,000 years, with t, fixed at 1000 years and € fixed at 0,01,

forn=1,2,3,4,6,and 8. Figure 5 shows the resulting plots of
8y(1) and p(2) for nine combinations of values for the parameters
o and A. Only combinations for which 8y () never exceeds p(t)
during the period of regulatory concern successfully meet the
"requirements.” Note that none of the cases with 100-year
MTTF individual barriers meet even the statutory controlled
release requirement, and that eight 1,000-year MTTF barriers
are not quite adequate.

SUMMARY AND CONCLUSION

The results developed in this paper may be summarized in
the following statements (some of these conclusions are
qualitatively correct for failure distributions other than
exponential):
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1. Even if radioactive decay is ignored, a single barrier

must have a mean lifetime on the order of 107 years to meet
even the controlled release requirement.

2. For a non-zero decay constant (e.g., a hypothetical

radionuclide with mean lifetime of 1,000 years), even a 107-year
single barrier would not meet the release criteria used.

a. With two barriers, the single-barrier MTTF required
would be on the order of 100,000 years or greater.

b. Three barriers with a 10,000-year MTTF each would
almost succeed, but fail if their individual MTTFs were reduced
to 1,000 years.

c. More than six barriers would be required for
individual MTTFs of 1,000 years.

3. Six 1,000-year MTTF barriers would not meet the
modified release criteria for a radionuclide mean lifetime of 100
years, but 8 would. If their MTTFs are reduced to 100 years
each, then the release criteria would not be met.

4. Although an endless variety of cases could be run,
varying not only the parameters considered above but t_and € as
well, the cases presented serve adequately to demonstrate that
the development of a safe nuclear waste repository is far from
being a conventional large-scale construction project, It is vital
to understand the details governing the performance of both the
natural and the engineered barrier systems.
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