Thin-film microsensor offers intelligent detection of many gases

PDF Version Also Available for Download.

Description

Scientists at Argonne (IL) National Laboratory have developed a thin-film microsensor that is capable of detecting and quantifying a wide variety of gases and gas mixtures at concentraitons as low as 1 ppm. The sensor technology is suitable for controlling boiler and flue-gas emissions, characterizing contaminated soil and air, monitoring for noxious gases, and providing early intelligent detection of toxic vapors. Intelligence comes from onboard neural network software that identifies gases by matching cyclic voltammograms with stored patterns previously obtained from standard reference samples. The sensor and the techniques used to optimize the thin films involved will be the subject ... continued below

Physical Description

2 p.

Creation Information

Creator: Unknown. December 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Creator

  • We've been unable to identify the creator(s) of this article.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Scientists at Argonne (IL) National Laboratory have developed a thin-film microsensor that is capable of detecting and quantifying a wide variety of gases and gas mixtures at concentraitons as low as 1 ppm. The sensor technology is suitable for controlling boiler and flue-gas emissions, characterizing contaminated soil and air, monitoring for noxious gases, and providing early intelligent detection of toxic vapors. Intelligence comes from onboard neural network software that identifies gases by matching cyclic voltammograms with stored patterns previously obtained from standard reference samples. The sensor and the techniques used to optimize the thin films involved will be the subject of a talk given by Jim Vetrone on Tuesday aternoon at 2:20 p.m. in Room 1011.

Physical Description

2 p.

Notes

OSTI as DE96002561

Source

  • 42. National Symposium of the American Vacuum Society (AVS), Minneapolis, MN (United States), 16-20 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96002561
  • Report No.: ANL/MSD/CP--87860
  • Report No.: CONF-951030--3
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 135051
  • Archival Resource Key: ark:/67531/metadc627963

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Dec. 15, 2015, 6:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Thin-film microsensor offers intelligent detection of many gases, article, December 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc627963/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.