A procedure for the automatic estimation of mixed layer height.

PDF Version Also Available for Download.

Description

The daytime mixed layer results from mechanical and thermal turbulence processes driven by differences in air-surface temperature and moisture. As such, the height of the mixed layer (z{sub i}) is a measure of the effectiveness of energy transfer from the sun to the earth's surface and, in turn, to the lower atmosphere (Stun, 1989). Maximum daytime values for z{sub i} in the region of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) vary from less than 100 m in cloudy, moist, calm, stable conditions to nearly 3 km in clear, dry, unstable conditions. The principal characteristic of the ... continued below

Physical Description

7 p.

Creation Information

Coulter, R. L. April 15, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The daytime mixed layer results from mechanical and thermal turbulence processes driven by differences in air-surface temperature and moisture. As such, the height of the mixed layer (z{sub i}) is a measure of the effectiveness of energy transfer from the sun to the earth's surface and, in turn, to the lower atmosphere (Stun, 1989). Maximum daytime values for z{sub i} in the region of the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) vary from less than 100 m in cloudy, moist, calm, stable conditions to nearly 3 km in clear, dry, unstable conditions. The principal characteristic of the mixed layer is that scalar quantities such as moisture and temperature are mixed throughout. Thus, z{sub i} becomes one of the principal scaling parameters used to describe the structure of the lower planetary boundary layer. Normally, a stable layer (a potential temperature inversion) at the top of the mixed layer interfaces between processes in the lower atmosphere and in the free atmosphere above. The strength of this inversion limits the rate of growth of z{sub i} with time and the vertical transfer of energy and moisture. When and if z{sub i} reaches the condensation level, clouds can form; hence, cloud base height (particularly for fair-weather cumulus clouds) often coincides with z{sub i} later in the day. Although the concept of the mixed layer height is straightforward, its measurement can be relatively difficult, or at least awkward. The most reliable method is an analysis of potential temperature and mixing ratio profiles retrieved from balloon ascents. (The potential temperature changes from constant to increasing with height; the mixing ratio changes from constant to decreasing with height.) Often however, the profiles of temperature and moisture are ambiguous, with multiple inversions or none at all. In addition these profiles supply only a snapshot of the atmospheric structure that may well be unrepresentative of the average, either in time or space. In some instances, the term ''well mixed'' should not be applied to the lower atmosphere at all; during and after precipitation, for instance, the changes in surface and lower atmospheric conditions cause large ambiguities. This paper describes an automatic estimation method using radar profiler data and discusses a one-year climatology of z{sub i} over the SGP CART site.

Physical Description

7 p.

Notes

OSTI as DE00010735

Medium: P; Size: 7 pages

Source

  • Atmospheric Radiation Measurement (ARM) Science Team Meeting, Tucson, AZ (US), 03/24/1998--03/26/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ER/CP-96114
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10735
  • Archival Resource Key: ark:/67531/metadc627882

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 15, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 3:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Coulter, R. L. A procedure for the automatic estimation of mixed layer height., article, April 15, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc627882/: accessed December 10, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.