Corrosion performance of structural alloys.

PDF Version Also Available for Download.

Description

Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described ... continued below

Physical Description

14 p.

Creation Information

Natesan, K. July 15, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Component reliability and long-term trouble-free performance of structural materials are essential in power-generating and gasification processes that utilize coal as a feedstock. During combustion and conversion of coal, the environments encompass a wide range of oxygen partial pressures, from excess-air conditions in conventional boilers to air-deficient conditions in 10W-NO{sub x} and gasification systems. Apart from the environmental aspects of the effluent from coal combustion and conversion, one concern from the systems standpoint is the aggressiveness of the gaseous/deposit environment toward structural components such as waterwall tubes, steam superheaters, syngas coolers, and hot-gas filters. The corrosion tests in the program described in this paper address the individual and combined effects of oxygen, sulfur, and chlorine on the corrosion response of several ASME-coded and noncoded structural alloys that were exposed to air-deficient and excess-air environments typical of coal-combustion and gasification processes. Data in this paper address the effects of preoxidation on the subsequent corrosion performance of structural materials such as 9Cr-1Mo ferritic steel, Type 347 austenitic stainless steel, Alloys 800, 825, 625, 214, Hastelloy X, and iron aluminide when exposed at 650 C to various mixed-gas environments with and without HCI. Results are presented for scaling kinetics, microstructural characteristics of corrosion products, detailed evaluations of near-surface regions of the exposed specimens, gains in our mechanistic understanding of the roles of S and Cl in the corrosion process, and the effect of preoxidation on subsequent corrosion.

Physical Description

14 p.

Notes

OSTI as DE00011770

Medium: P; Size: 14 pages

Source

  • 13th Annual Conference on Fossil Energy Materials, Knoxville, TN (US), 05/11/1999--05/13/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ET/CP-98866
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11770
  • Archival Resource Key: ark:/67531/metadc627879

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 15, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 2:06 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Natesan, K. Corrosion performance of structural alloys., article, July 15, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc627879/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.