CaO insulator and Be intermetallic coatings on V-base alloys for liquid-lithium fusion blanket applications

PDF Version Also Available for Download.

Description

In the period of April 1, 1995 to June 30, 1995, a computational model for simulating particle motions turbulent flow condition is developed. The model was applied to the analysis of particle transport and deposition processes in a circular duct and in a plane recirculating region. The mean gas velocity and turbulence intensity fields were first estimated using the available experimental data, as well as those obtained from an earlier developed CFD code. A model for evaluating particle deposition rate in the presence of gravitational and electrical forces in turbulent flows was also formulated. Results concerning the deposition velocity of ... continued below

Physical Description

5 p.

Creation Information

Park, J.H. & Kassner, T.F. August 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

In the period of April 1, 1995 to June 30, 1995, a computational model for simulating particle motions turbulent flow condition is developed. The model was applied to the analysis of particle transport and deposition processes in a circular duct and in a plane recirculating region. The mean gas velocity and turbulence intensity fields were first estimated using the available experimental data, as well as those obtained from an earlier developed CFD code. A model for evaluating particle deposition rate in the presence of gravitational and electrical forces in turbulent flows was also formulated. Results concerning the deposition velocity of particles under various conditions were obtained. It was shown that the model predictions are in good agreement with the available experimental and digital simulation data. Experimental study of glass fiber transport and deposition rate is also initiated.

Physical Description

5 p.

Notes

INIS; OSTI as DE96002527

Source

  • 16. IEEE/NPSS symposium on fusion engineering, Champaign, IL (United States), 1-5 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96002527
  • Report No.: ANL/ET/CP--87809
  • Report No.: CONF-950905--2
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 162194
  • Archival Resource Key: ark:/67531/metadc627868

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • August 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Dec. 15, 2015, 6:37 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Park, J.H. & Kassner, T.F. CaO insulator and Be intermetallic coatings on V-base alloys for liquid-lithium fusion blanket applications, article, August 1, 1995; Illinois. (digital.library.unt.edu/ark:/67531/metadc627868/: accessed October 16, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.