LLNL/JNC repository collaboration interim progress report

PDF Version Also Available for Download.

Description

Under this Annex, a research program on the near-field performance assessment related to the geological disposal of radioactive waste will be carried out at the Lawrence Livermore National Laboratory (LLNL) in close collaboration with the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC). This program will focus on activities that provide direct support for PNC's near-term and long-term needs that will, in turn, utilize and further strengthen US capabilities for radioactive waste management. The work scope for two years will be designed based on the PNC's priorities for its second progress report (the H12 report) of research and ... continued below

Physical Description

23033 Kilobytes pages

Creation Information

Bourcier, W.L.; Couch, R.G.; Gansemer, J.; Halsey, W.G.; Palmer, C.E.; Sinz, K.H. et al. July 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Under this Annex, a research program on the near-field performance assessment related to the geological disposal of radioactive waste will be carried out at the Lawrence Livermore National Laboratory (LLNL) in close collaboration with the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC). This program will focus on activities that provide direct support for PNC's near-term and long-term needs that will, in turn, utilize and further strengthen US capabilities for radioactive waste management. The work scope for two years will be designed based on the PNC's priorities for its second progress report (the H12 report) of research and development for high-level radioactive waste disposal and on the interest and capabilities of the LLNL. The work will focus on the chemical modeling for the near-field environment and long-term mechanical modeling of engineered barrier system as it evolves. Certain activities in this program will provide for a final iteration of analyses to provide additional technical basis prior to the year 2000 as determined in discussions with the PNC's technical coordinator. The work for two years will include the following activities: Activity 1: Chemical Modeling of EBS Materials Interactions--Task 1.1 Chemical Modeling of Iron Effects on Borosilicate Glass Durability; and Task 1.2 Changes in Overpack and Bentonite Properties Due to Metal, Bentonite and Water Interactions. Activity 2: Thermodynamic Database Validation and Comparison--Task 2.1 Set up EQ3/6 to Run with the Pitzer-based PNC Thermodynamic Data Base; Task 2.2 Provide Expert Consultation on the Thermodynamic Data Base; and Task 2.3 Provide Analysis of Likely Solubility Controls on Selenium. Activity 3: Engineered Barrier Performance Assessment of the Unsaturated, Oxidizing Transient--Task 3.1 Apply YMIM to PNC Transient EBS Performance; Task 3.2 Demonstrate Methods for Modeling the Return to Reducing Conditions; and Task 3.3 Evaluate the Potential for Stress Corrosion Cracking in PNC Waste Packages. Activity 4: Coupled Displacement and Degradation Analysis of Carbon Steel Overpack Embedded in Bentonite--Task 4.1 Demonstration of NIKE-2D/ALE-3D Mesh Adaptation Capability; Task 4.2 Demonstration of NIKE-2D/ALE-3D Code Capability to Compute Realistic Repository Problems; Task 4.3 Implementation and Verification of the Cam Clay Model in NIKE-2D/ALE-3D Code; and Task 4.4 Estimation of the Timing and Spatial Distribution of Rewetting.

Physical Description

23033 Kilobytes pages

Source

  • Other Information: PBD: 1 Jul 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: UCRL-ID-135001
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/12540 | External Link
  • Office of Scientific & Technical Information Report Number: 12540
  • Archival Resource Key: ark:/67531/metadc627816

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • July 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • March 22, 2016, 3:04 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 8

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bourcier, W.L.; Couch, R.G.; Gansemer, J.; Halsey, W.G.; Palmer, C.E.; Sinz, K.H. et al. LLNL/JNC repository collaboration interim progress report, report, July 1, 1999; California. (digital.library.unt.edu/ark:/67531/metadc627816/: accessed October 19, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.