Fluorescent microthermal imaging-theory and methodology for achieving high thermal resolution images

PDF Version Also Available for Download.

Description

The fluorescent microthermal imaging technique (FMI) involves coating a sample surface with an inorganic-based thin film that, upon exposure to UV light, emits temperature-dependent fluorescence. FMI offers the ability to create thermal maps of integrated circuits with a thermal resolution theoretically limited to 1 m{degrees}C and a spatial resolution which is diffraction-limited to 0.3 {mu}m. Even though the fluorescent microthermal imaging (FMI) technique has been around for more than a decade, many factors that can significantly affect the thermal image quality have not been systematically studied and characterized. After a brief review of FMI theory, we will present our recent ... continued below

Physical Description

12 p.

Creation Information

Barton, D.L. & Tangyunyong, P. September 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The fluorescent microthermal imaging technique (FMI) involves coating a sample surface with an inorganic-based thin film that, upon exposure to UV light, emits temperature-dependent fluorescence. FMI offers the ability to create thermal maps of integrated circuits with a thermal resolution theoretically limited to 1 m{degrees}C and a spatial resolution which is diffraction-limited to 0.3 {mu}m. Even though the fluorescent microthermal imaging (FMI) technique has been around for more than a decade, many factors that can significantly affect the thermal image quality have not been systematically studied and characterized. After a brief review of FMI theory, we will present our recent results demonstrating for the first time three important factors that have a dramatic impact on the thermal quality and sensitivity of FMI. First, the limitations imparted by photon shot noise and improvement in the signal-to-noise ratio realized through signal averaging will be discussed. Second, ultraviolet bleaching, an unavoidable problem with FMI as it currently is performed, will be characterized to identify ways to minimize its effect. Finally, the impact of film dilution on thermal sensitivity will be discussed.

Physical Description

12 p.

Notes

OSTI as DE95017569

Source

  • 50. meeting of the international Statistical Institute, Beijing (China), 21-29 Aug 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95017569
  • Report No.: SAND--95-1945C
  • Report No.: CONF-9508139--2
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 102393
  • Archival Resource Key: ark:/67531/metadc627709

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 14, 2016, 3:55 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Barton, D.L. & Tangyunyong, P. Fluorescent microthermal imaging-theory and methodology for achieving high thermal resolution images, article, September 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc627709/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.