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Abstract

The stability properties of m > 2 tearing instabilities in tokamak plasmas

are analyzed. A boundary layer theory is used to find asymptotic solutions to

the ideal external kink equation which are used to obtain a simple analytic

expression for the tearing instability parameter A'. This calculation generalizes

previous work on this topic by considering more general toroidal equilibriaq

(however, toroidal coupling effects are ignored.) Constructions of A" are

" obtained for plasmas with finite beta and for islands that have nonzero wiLdth. A

simple heuristic estimate is given for the value of the saturated island width

when the instability criterion is violated. A connection is made between the

calculation of the asymptotic matching parameter in the finite beta and island

width case to the nonlinear analog of the Glasser effect [A. H. Glasser, et al, Phys.

Fluids 18, 875 (1975)].

PACS numbers: 52.35.Py, 52.30.Jb, 52.55.Fa, 52.55.Dy _q:mS[ii _'_.r ;'" _
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I. Introduction

Resistive magnetohydrodynamics (MHD) theory predicts the occurrence

of current-driven tearing instabilities in tokamak plasmas. 1 Resistive MHD

models have been reasonably successful in characterizing a number of important

macroscopic phenomena (Mirnov oscillations, locked modes, disruption physics,

etc.) that have been observed in tokamaks for more than a decade.2 More

recently, it has been observed that many of the high performance tokamak

discharges exhibit low mode number MHD oscillations and the magnetic islands

associated with these instabilities. 3'4 The presence of these instabilities causes a

degradation of the energy confinement time for these plasmas. The observed

confinement degradation can be associated with the appearance of low mode

number magnetic islands at rational surfacer. 5 In particular, supershots on the

Tokamak Fusion Test Reactor (TFTR) typically have m/n = 3/2 or m/n = 4/3

modes that occur, whereas the m/n = 2/1 mode does not appear. 3 Naively, this

observation seems to be in contradiction to resistive MHD theory since one

would expect the m = 2 modes to be more unstable than the m = 3 and m = 4

modes. The ability to predict the appearance of these instabilities is an important

issue for advanced tokamak operation scenarios.

In the linear resistive MHD theory of m > 2 tearing modes, the plasma is

assumed to be described by ideal MHD everywhere except a thin layer

encompassing a magnetic surface where the safety factor is rational. The theory

of asymptotics is then used to construct inner and outer region solutions which

are then matched to link the nonideal inner layer solution to the outer solution.

The outer region solution, where the effects of resistivity and inertia are small, is

usually computed by numerically integrating the exterior kink equation. 6 In

resistive MHD, tearing mode stability is determined through the asymptotic

matching parameter A', which is constructed from the "exterior" ideal region
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solutions. For plasmas with no pressure gardient (Vp = 0), an energy integral

can be constructed which demonstrates that the change in magnetic energy is

proportional to A" (the jump discontinuity in the logarithmic derivative of the

perturbed magnetic potential). 7 For a magnetic potential of the form _(x) = _t(r)

exp(im0- in_), where e and _ are the poloidal and toroidal angles and it is

assumed that the equilibrium magnetic surfaces are circles, the change ir_ the

magnetic energy is given by

1 djll 1 m 2}
W m = _ _ dx {IV_L_[2 + dr B0 m - nq I_VI , (1)

where J ll is the parallel current, B0 is the equilibrium poloidal magnetic field and

q(r) is the safety factor. Away from the rational surface the magnetic

perturbation satisfies the Euler-Lagrange equation that results from minimizing

the energy integral. However, the differential equation governing the magnetic

potential has a singularity at the surface described by q(r s) = m/n, which

indicates that the general solution for _ has a discontinuity in the first derivative

of V. Consequently, the change in magnetic energy is given by

I d_F d_F

= - lim {rs_*-dT(rs-a)- rs_*_ (rs+ E)}]4rm 4 E-+O

1 2
= -_r s I_(rs) l A" , (2)

where we have chosen to consider only a single rational surface in a

monotonically increasing q profile. If A" > 0, instability to tearing modes is

indicated; then there exists a free-energy source for the resistive reconnection of

magnetic field lines. 6-8

It has also been shown that A" remains a relevant stability quantity for m >

2 tearing modes in collisionless and semi-collisional plasmas 9 and also

determines the ultimate nonlinear evolution of the magnetic island. 10"13
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For plasmas with finite beta (Vp ¢ 0) the solutions of the exterior region as

they near the rational surface deviate from the zero beta case. The asymptotic

matching parameter is obtained from the discontinuity of the ratio of the large to

small solutions across the rational surface. 14 Because of the finite beta

modification of the exterior solutions near the rational surface, the analogous

integration by parts of the magnetic energy integral [Eqs. (1) and (2) with

pressure driven terms] produces a divergent integral. This divergence prevents

using the primitive integral to construct a variational principle for determining

non-ideal stability properties of finite beta plasmas. However, recently, Pletzer

and Dewar have solved this problem by constructing a variational integral from

an extended energy matrix. 15 The extended matrix is constructed from

contributions from both the potential energy integral of ideal MHD and from

integrals over the large solutions. 16 This method has significantly extended the

usefulness of ideal MHD stability codes by creating an efficient method for using

tb_em to test for tearing mode stability.

In this paper, we use analytic methods to solve the exterior kink equation

and construct the asymptotic matching parameter A'. The goal is to derive a

simple, reliable analytic expression for A" in terms of equilibrium plasma

quantities that can be compared to experimental and numerical investigations of

resistive MHD. A boundary layer theory is used to describe the ideal exterior

region solution. The ideal boundary layer is centered on the resonant rational

surface and is of radial extent rs/m where we are treating 1/m as an

asymptotically small number. In the next section we will first consider the case

of a zero beta plasma and construct A" at zero and finite magnetic island width.

In Sec. l]I, nonzero beta effects are included and a similar construction of the

matching parameter is made. We examine the case of a nonzero island width in



a finite beta plasma in Section IV. A synthesis of these results and their

implications is given in the final section.

II. Tearing Stability of a [3= 0 Plasma

The equilibrium configuration examined is assumed to be axisymmetric.

As such, we write

Bo = I(v) V_ + V_xVv, (3)

where _ is the toroidal angle and _, the poloidal flux function, serves as a

magnetic surface label. The poloidal angle magnetic coordinate X is chosen such

that

Bo'V
- q(v) , (4)

Bo'V;c

where q is the safety-factor and is assumed to be a monotonically increasing

function of _. With this coordinate system the Jacobian has a simple form

J = (Vvx vx.v ) -1 - (5)- I '

where R is the major radius. The metric elements are defined by gVV = V_'-V_,

gVX= V_.Vx, gXX= Vx.Vx" Since the equilibrium is axisymmetric, g_= R-2, and

g_'_ = g_ = 0.

The ideal MHD equations are solved in the exterior region where inertia

and nonideal effects are small. At [_ = 0, the quasineutrality condition V.J = 0

gives a relation for the linear perturbation

%.riTE J,,o+ B.V--ff--= 0, (6)
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where the perturbed magnetic field is written 13= V_ x VA, A = A(_) exp(im%-

in_), and m/n = qo = q(_s)" The equilibrium parallel current is written J.B/B 2 =

c. Equation (6) is now given by

J(q_-_ +_)B 2 +J(a Za_/ -a_/ax ) = o, (7)

where Ampere's Law is used to construct the perturbed current and is given by

_.B 12 O J 8A J gVZ8%
_OB2 = q(12+gW)[ _-_(_-_gW _ + _-_ _-%)

+ _ZZ R2 _-% + R-2 12 + gWV3_ (R--2gZZ--+3% R-2

g_Z 3 J 3A J g_zaA
+ 12 + gW 0_ (R--2gW--_ +

The assumption that the toroidal magnetic field strength exceeds the poloidal

field strength, (gW << 12) allows the last two terms to be dropped and the

perturbed current simplifies to

_to_ 1 3 (q gVW3_____A 3,_ 3 (_ gZZ 3__A 0A- q[_ 3_ + qg'z-_-%) + _%% 3% + qg'z3--_)] , (9)

where Eq. (5) is used.

In general the metric elements in Eq. (9) are not flux functions, for

example, g_ = g_(_/,%). This complicates the calculation of tearing stability

considerably since toroidicity couples all the rational surfaces with the same

toroidal mode number. 17 However, since we are seeking an equation for a single

magnetic helicity, an averaging technique can be applied to Eqs. (7) and (9). We

accomplish this by multiplying Eq. (7) by the phase factor exp(-im Z + n_) and

then integrate over a field period by applying a _dl/B operator to Eq. (7). In

these units q_dl/B = _ J d%/2_. The multiplication of the harmonic before the

integration ensures that we obtain the resonant component. We write the



perturbed magnetic field as a single helicity to avoid the problems of toroidal

coupling, i. e. ,A = A(_) exp(imz - in_). These mode couplings tend to be small

(order E2, where Eis the inverse aspect ratio) in circular cross-section plasmas for

large mode poloidal mode numbers; however, they may be very important for m

= 1, andm = 2modes since the A" for m = 1 goes as _-2. By applying this

averaging technique, an ordinary differential equation for the mode amplitude is

derived and given by

I 3__q-w3_AA I 3 i 3A
(m - nq) [_ 3_ I _; 3_ + q 3_1/ Iq-g'ZA + img'Z- - m2gZZA]

-mI_oC'A = 0 , (10)

where _W = _(dz/2x) gW, _zZ = _(dz/2n) gZZ, _WZ = _(dz/2x) gWZ,and _" =

_(dz/2x) _'. The z-varying part of the equilibrium parallel current has been

eliminated by the averaging. The z-dependent parts of the metric element gWZ

describe the Shafarnov shift and Pfirsch-Schlfiter current effects, while the Z-

averaged portion of g_rZis smaller. Motivated by this observation, we can further

simplify the calculation by ignoring the _z with respect to g_ and _zz. It is

worth noting that these simplifications are not very good approximations in

machines that have very small aspect ratios or highly shaped flux surfaces;

however in such cases the toroidicity induced coupling of tearing mode

eigenfunctions become important, 17 effects that are outside the scope of the

present study. Using this simplification, Eq. (10) reduces to

I 3 -- - m2gZZA]- mI_tor_"A = 0 . (11)
(m - nq)[_ _ qI _WW3_3A

Equation (11) is singular at the rational surface m = nq. Consequently, the

general solution has a jump in the first derivative of A across the rational surface.

Equation (11) is solved in two regions that are separated by the surface _ = _l/s.



The eigenfunction A satisfies boundary conditions at the magnetic axis and the

conducting wall and is also demanded to be continuous across the rational

surface.

In the present study we now treat 1/m as a small number and seek

asymptotic solutions for A from Eq. (11). The solution A can be written in a

perturbation series A =_ (Ak/mk). Since A varies more rapidly with U than the

equilibrium quantities, the two solutions for A to leading order in 1/m away

from the rational surface are given by

.,/A = C 1 exp[ j du m ] + C 2 exp[-_ du m _- ], (12)

where C 1 and C 2 are constants multiplying the two solutions. As the magnetic

axis is approached it is possible to show that A = CI rm + C2r -m where r is the

"radial" distance from the magnetic axis. The condition that the solution is

regular on the magnetic axis dictates that C2 = 0 for the solution describing A for

U < Us. In a similar manner, at large U the solution is also given by the solutions

rm and r -m. Assuming the conducting wall is at infinity, C 1 = 0 for the solution

for U > Us. To leading order in l/m, the solution to Eq. (11) is basically given by

balancing the first two terms

A + = C+exp( -J du m _g_X) for U > Us, (13a)

g_g_)
A- = C exp( ,fdu m for U < Us , (13b)

where the superscripts + (-) refer to U - Us > 0 (< 0).

Clearly, this expansion procedure breaks down as we approach the

rational surface, since for some value of U, the last term in Eq. (11) becomes

comparable to the second term. Therefore, we now use a boundary layer theory
8
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on Eq. (11), where the "exterior" region of the ideal solution is given by the

perturbation theory given above. The "interior" region of the ideal solution is

then defined by the strained variable

rn J'_XX ....

X= 2m (q-n) X_q,2, (14)

where the terms inside the square root are evaluated at the rational surface. The

strained variable X is taken as an order unity quantity, so that the interior region

describes the solution in a region of "radial" width rs/m centered on the rat_.onal

surface. We note parenthetically that the "natural" strained variable is written as

a function of the deviation in q away from the rational surface, not the radial

distance. We expand in this variable to avoid an unnatural singlarity that would

arise in the second order expansion of the inner solution. The term involving the

current gradient can be expanded as a function of X near the rational surface.

This expansion introduces a parameter at the rational surface given by

m

Iq_toO" 1 rq It° d--uJI , (15a)
k = - 2mq-------=I_ = - m (dq/dr) B---Odr r "- rS

Wg
which is given by the value of the quantities at the rational surface and the last

approximate form is the limit for circular flux surfaces in a cylinder. We will take

this parameter to be order unity. For the case of a high-J3 tokamak, an inverse

aspect ratio expansion of the equilibrium can be made. 18 For the case of a shifted

circle equilbrium, finite el30corrections enter through the evaluation of the metric

elements in Eq. (15a). The current gradient parameter for this case is given by

rq Po djll I x
k = - m (dq/dr)B 0 dr r =r s

i i { ( sb)
%/l+(v_/2p)211._4p2+5p41%/l+(v_/2p)2[l+9p41 r = rs
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where p = r/a, v_ = [3tq2Ro/a, a is the minor radius, Ro is the major radius, and

[3t and q, are the toroidal beta and kink safety factor as defined in Ref. 18. Since

finite v_ decreases _,, these finite beta/toroidal corrections have a small

stabilizing effect,

The inner solution to leading order in 1/m is given by the solution of the

differential equation

d2A 1

dX----_ - [_'+_]a = 0 , (16)

where the subscript indicating the order of the inner perturbation series is

suppressed. The solutions to Eq. (16) are given by Whittaker functions. 19 A

number of properties of these special functions are given in Appendix A. The

Whittaker functions W ;vO.5(X) and WK/o.5(-X) are the two linearly independent

solutions to Eq. (16). Asymptotic matching of the inner limit of the outer solution

to the inner limit using Eqs. (13) and (A6) gives an expression for the

eigenfunctions in the ideal interior region:

+
Ainner = F(I+K)W_;v0.5(X) for X > 0 (17a)

Airu_er = F(1-_.)WK/0.5(-X) for X < 0, (17b)

where continuity at X = 0 has been demanded. Figure 1 shows yhe

eigenfunctions for a range of values of the parameter _.. It shows that the

difference in the derivative of A across the rational surface increases with _..

From the definition of A" in zero beta plasmas, the asymptotic matching

parameter is given by

1 dA I dA

- E-_olim{A_---(rs+e)-A dr(rs-E)}

= 2m {A_a)-A dX-(-¢)}. (18)

10



From Eqs. (17), (A7) and (A8), we obtain the result

= - 2mg__-_._ cot(_._) , (19)
/.

where for circular flux surfaces "_xx = 1/r s. This result in the limit of circular

flux surfaces has also been obtained by Strauss using a ballooning formalism. 20

As k --> 0, we recover the Ao = -2m/r s limit of large-m stable tearing modes.

Equation (19) predicts the condition Ikl > 0.5 or

IqBoO" 1

I q, I_:X_W >m (20)

as the instability threshold for a tearing mode with poloidal mode number m.

For circular flux surfaces this inequality simplifies to

Iqrs-------_I > m . (21)
q'Bo

The threshold condition given in Eq. (21) has been predicted by previous authors

for cylindrical plasmas. 2°23 Equation (20) generalizes these predictions. In

Appendix B, this stability condition is used to evaluate the stability criterion for

the class of current profiles introduced in Ref. 6. Note that as _, --> 1, zX"

approaches infinity. At _. = 1, eigenfunction solutions can be constructed with

the property A(X=0) = 0. This suggests that _. = 1 is the ideal stability threshold

to lowest order in the 1/m expansion

Note that the instability condition in Eqs. (20) and (21) is given as a

function of the local plasma quantities. It should be noted however, that this

criterion is derived from a leading order expansion of the eigenfunction solution.

The order 1/m corrections are given in Appendix C where second derivatives of

the current and q profiles are taken into account. It has been noted for a

particular current profile and q-profile, that Eq. (11) has an exact solution for

cylindrical plasmas. 24
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Equation (20) predicts the linear theory threshold. However, if the

resulting tearing instability produces a magnetic island that exceeds the linear

tearing layer, the nonlinear theory of Rutherford 13 should be used to describe the

nonlinear evolution of the island. For this regime it is required that a" be

evaluated at finite island width. To compute this we use the finite island width

definition of White et al. 12 and Carreras et al. 13 given by

dA dA
-dT(rs+W) - _-_(rs-w )

ao(w ) - A(rs ) (22)

to describe the asymptotic matching parameter, where 2w is the radial extent of

the magnetic island. From the inner solution, Eq. (17), we obtain the relation

ao(W ) = 2m g__--{F(l+K)I_;_(co) + rO-;gix(co)]}, (23)

where

1

Ix(c0) = - _ WX/0.5(@ + -co [W_/0.5( @ - (1-_,) W;__1/0.5(@] , (24ai

! x__
I _.(co)= - _ W_;_./0.5(cO) - co[W_;_./0.5(cO) - (I+X) W_K_I/0.5(cO)] ,(24b)

are sums of Whittaker functions and co= 2m_gXX w is the normalized island

width. As w --_ 0, Eq. (19) is recovered from Eq. (23).

A saturated island width can be computed from the relation A_(Wsat) = 0 if

we ignore the extra quasilinear effect described by White, et al. 12 The only free

parameter in Eq. (23) is then the normalized current gradient parameter _.

Solving for the saturated island width yields a monotonically increasing function

of _., which can be given to reasonable accuracy by the simple relation for the

island half-width when X exceeds the linear instability threshold

= 4.09 (X 1

Wsat _ 2m _._. __ - _) . (25)

12



Figure 2 plots the solution of Ao(Wsat) = 0 as a function of X and the approximate

solution, Eq. (25).

The definition used in Ref. 13 as outlined above for the saturated island

width is not rigorously derived. However, it has been compared favorably to

nonlinear numerical calculations of island saturation. 12'13 A more proper use of

singular perturbation theory can be used to obtain saturated island widths. 25'26

However, as suggested in Ref. 25, the two approaches yield the same qualitative

results and differ by only a small numerical difference.

III. Tearing Stability of a [3,0 Plasma

When Vp _ 0 in the vicinity of a rational surface, an additional term is

added to the exterior kink equation. From the quasineutrality condition, we

obtain the relation B.V(J.B/B 2) =-V.J±, where J± depends on the pressure

gradient through the diamagnetic current of the MHD equilibrium. This

additional term describes the effect of the equilibrium pressure gradient and

curvature. Including this term, the exterior kink equation is now given by

qI33_I__ 3A___ m2_ZZA - m - (m__q):_ip,j,m -3_ mC-nql_toC A- A = 0 , (26)

. where p" = dp/d_ is the equilibrium pressure gradient and J" = dJ/d_ measures

the surface averaged normal curvature. In cylindrical plasmas J" > 0 which

indicates a magnetic hill that is destabilizing to interchange instabilities, whereas

a magnetic well is present in tokamak plasmas, (J" < 0). A more careful

derivation of the pressure/curvature term yields the E + F + H terms of Glasser,

Greene and Johnson. 27

Although the last term in Eq. (26) is order [3 and in principle small

compared to the other terms of the equation, it has a large effect close to the

rational surface. Near _ = BCs,Eq. (26) has the approximate asymptotic form

13



d2A c_ 1/4 - D I

d_ 2 - 0V-_s)A + 0V__Vs)2A = 0 (27)

where

m

qo IBo(y
0_ = - --v--, (28)

qo _

1 2q,.,ID'T"
DI = _ + __ _a._=_ (29)

qo2 g_ '

are the current gradient and the Mercier term evaluated at the rational surface.

The last term determines the asymptotic limit of the eigenfunction as it nears the

rational surface. Specifically, the inner limit of the outer solution is given by

A = Co( IV-Vs I-v + A IV-Vs 1l+v ) , (30)

where

1
v = -_ + _ , (31)

,_ is the ratio of the small to large solutions as the rational surface is approached,

and v - _ for 13<< 1. It is presumed that the plasma is ideally stable (D I > 0) so

that v is real. The discontinuity in the ratio of the small to large solutions is the

asymptotic matching parameter,

= [A+ + A_ ] (_F_)1/2 +v, (32)

where the plus (minus) sign refers to the solution for _V- _Vs > 0 (< 0) and the

metric factor is added so that ,_ scales as the inverse length to the I + 2v power.

Clearly, this definition reduces to the zero beta A" as v _ 0.

Following the same procedure as that used in the previous section, the

asymptotic outer region of the ideal solution is given by the perturbation series

whose first term is given by Eq. (13). Using the strained variable defined in Eq.

14



(14), the inner region of the ideal solution is governed to leading order in 1/m by

the equation

d2A 1 L v +v_____2
dX 2 - [_ + _ + X2 ]A = 0 , (33)

where _, is given by Eq. (15). The two linearly independent solutions to Eq. (32)

are given by the Whittaker functions W k/o.5+v(X)and W_./o.5+v(-X) [see

. Appendix A and Ref. (19)]. From matchip.g to the exterior solution we find the

inner region solution

+ F(I+K+v)

Ainne r = _ W_xy0.f+v(X) for X > 0 (34a)

Ainner F(1-X+v)
= F(I+2v) W_0"5+v(-X) for X < 0. (34b)

As discussed in Appendix A, the Whittaker functions Wk,_t(X) with _t not a half-

integer can be written in a power series in X multiplying the leading order

coefficients describing the small and large solutions. Note that the special value

I_ = 1/2 is the important case of zero beta that was described in the previous

section and does not have a simple power series expansion. 14 As X -o 0, the

solutions of Eq. (34) have the asymptotic form of Eq. (30). Using Eq. (22), we

obtain for the matching parameter

z_ = (2m_ l+2v 1 F(1-2v) {F(1-_+v) F(l+_,+v),2v(1+2v) F(l+2v) F(-_,-v) + F-_-_ 'j " (35)

For _ << 1 (v << 1), A_ is given by

z_ = Ao (2m g__) 2v {1 + v[W(i+_,)- W(1-_,)- 2 - 4q'(1)] + O(v2)},(36)

where a o is given in Eq. (19) and • (x) = d In F(x)/dx is. the Digamma-Psi

function.

15



A remarkable property of the stability condition given in Eq. (35) is that

the threshold for instability (A_ = 0) is given by X = 1/2 (as it is for ]3= 0) and is

independent of the value of v. Furthermore, for a given value of v, A _ increases

monotonically with Xjust as in case of Sec. II. Figure 3 plots A_ as a function of _,

for a number of different values of v. As a practical matter since v ---[_<< 1, the

exterior matching condition for linear stability theory is essentially unaffected by

finite beta effects in MHD theory.

However, it is important to realize that the "Glasser" effect of resistive

MHD theory manifests itself in the non-ideal boundary layer solution. 27 The

effect of pressure gradient/curvature in a resistive plasma changes the non-ideal

boundary layer solution dramatically and consequently changes the linear

instability threshold. We will examine this effect somewhat indirectly in the next

section, when we address finite island width effects in non-zero pressure

plasmas.

IV. Nonlinear stability of a 13_ 0 Plasma

The linear stability of finite beta plasmas is determined by the ratios of the

large and small solutions of the eigenmode equation. To determine the stability

properties of a 13* 0 plasma at small but nonzero island width, we need to define

the necessary matching data. Motivated by the work of Pletzer and Dewar, 14 we

define the quantity

A A

{l_-_s t-v [dA _ dA A +w

z_(w) = (_W)1/2 +v d_ d_ A]}-w
lim {l_-_s IrA} ' (37)

I_-_s I_0

which generalizes earlier definitions of the asymptotic matching parameter. The
A

notation A denotes the large solution to the tearing mode equation. Since the

large solution is responsible for the divergence of the energy integral, subtracting

16



out this piece of the derivative eliminates the singularity at the rational surface.

In the limit that the island width w goes to zero it is easy to see that Eq. (37)

reduces to the linear stability parameter of Eq. (32). For non-zero island widths,

this quantity is not a rigorously defined quantity; however it does have the nice

feature that it reduces to Eqs. (18), (22), and (32) in the appropriate limits. The

Whittaker's function that solves the eigenmode equation is made up of a linear

" combination of the solutions Mk/_t and Mk/__t [see Eqs. (A2)- (A5)]. The large

solution needed for Eq. (37) is that part of A given by Mk/__t since it goes as IV-

_s I-v as the rational surface is approached. Hence the large solution A is given

by

A +
.Air_e r = M_L/._0.5_v(X) for X > 0

/x

Airu_er = MK/__O.5_v(-X) for X < O. (38)

From the eigenfunctions of Eq. (34) and (38), A_(w) is computed and given by

F(l+_,+v). , , F(l-)_+v) ....

A_(W) = (2m g__) 1+2vc0-Vl C(l+2v-----_j__.tc0) + _Jktco)l

F(I+2v)
+ [K__(co)- Kz(co)]} , (39)CO

" where co = 2m _gZZ w, 2w is the radial extent of the island width and

1
Ix(co) = - _ W_./0.5+v(co)

1
+ -- [_,W_,/0 5+v(O)) - (_,-_,2+V +V 2) Wk_l/0.5+v(C0), (40a)co

1
J_x(c0)= _

_ 1 [_,W_k/0.5+v(co) _ (_,+_2_ v _v2) W_k_l/0.5+v(t0)] ' (40b)CO
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(_' - t°/2)M_v-0"5-v(°) - (_ + v)Mx-l/"O'5-v(t°) (40c)
Kx(co) = M?j._0.5_v(¢0) l.,(l__,+v)W_0.5+v(C0) ,

(X+o/2)M__j_0.5_v(O) - (X - v)M ;__l,_0.5_v(o)
= . (40d)

K _.(t0) M_;v_0.5_v(O) F(I+_'+v)W-xJ0.5+v(°)

All the previous results of this work are contained in Eq. (39) in the proper limits.

As the island width becomes small, the last term in Eq. (39) is to leading order

-2v/w; consequently, the term A_(w) can be simplified to be

z_(w) = w-2V[Ao(W)+ 2v], (41)

where Ao(W) is the zero beta matching data, defined by Eq. (22). Note that for _

0, the logarithmic derivative of A diverges as w --4 0, so that each term on the

right hand side of Eq. (41) separately diverges at small island widths, but they

cancel out in such a way as to give the ratio of large to small solutions, as defined

by Eqs. (30)-(32).

Up to this point we have only discussed the ideal solution matching data.

In order to obtain growth rates or an island evolution equation, the inner

resistive layer matching data is needed (denoted Ares in this work). The

matching is given by the equation 5" = Ares. As mentioned previously, the

effects of pressure and curvature enter the resistive MHD problem through the

interior region solution. In tokamak plasmas, these effects tend to be stabilizing

and oppose destabilizing A"S. 27'28 In the nonlinear Rutherford regime 10 the

pressure gradient/curvature effect becomes important near the rational

surface. 29 In the work of Ref. 29, the interior matching data for the Rutherford

regime was computed for [5# 0 plasmas. After matching to the exterior solution,

an island evolution equation was derived and given by

z_ = A res = W-2v(kl I't° dw DRn dt-" k2--w-) (42)

18



where rl/go is the resistive diffusion rate, k 1 and k 2 are positive constants of

order unity and DR is the resistive interchange parameter as defined in Ref. 26.

Note that the pressure driven term (DR) appears in the interior matching data.

Since finite plasma pressure is allowed in the interior region, the appropriate

matching is to the difference of the small to large solutions in the ideal exterior

region (denoted A_ in this work). However, suppose the pressure gradient was

- flattened in the interior resistive layer. This eliminates the pressure gradient

term in the inner region solution and also changes the asymptotic properties of

the inner solution. The resistive layer solution now matches to the logarithmic
i

derivative of the ideal exterior solution, Are s = A o" If we allow for pressure in

the exterior solution, the logarithmic derivative diverges as described above.

From Eq. (41), we can derive the island evolution equation for the magnetic

island,

• _ __2v (43)Ares= Ao = w2VA - w

In the Rutherford limit 10 [Ares = (kl_to/rl) (dw/dt)], Eq. (43) yields the same

equation as derived in Ref. 29 [see Eq. (42) above],

kl/iO dw 2v 2v
11 at -A_w - w "

(44)

For low 13,DR and (-v) differ by only a small factor.

The difference between the matching data for finite beta and zero beta

plasmas is naturally given by terms that goes as 2v/w, as indicated above. This

has also been pointed out by Bishop et al., 30 who solved for the linear

eigenfunctions in an equilibrium that had a pressure profile that was arbitrarily

flattened across a region that encompassed the rational surface. In their work,

the matching data differed by a term that went inversely with the radial extent of
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the flatspot. For tearing modes that produce a finite island size, the width of this

"flatspot" is proportional to the island width.

V. Discussion

An analytic theory for tearing mode stability with poloidal number m > 2

in tokamaks has been introduced. A boundary layer theory was used on the

ideal region of the plasma cross-section where the boundary layer is of width

rs/m centered on the mode rational surface. The resulting asymptotic

eigenfunction solutions were used to construct the tearing mode matching

parameter, A', given in Eq. (19), which determines the stability properties of

MHD tearing modes. This procedure yields a simple stability criterion given by

Eq. (20), which generalizes earlier work on this subject to include toroidal

equilibrium effects. The linear eigenmode is constructed for both pressure free

and finite pressure equilibria. It is found that an equilibrium pressure gradient at

the rational surface does not alter the parallel current gradient stability threshold,

Eq. (20). Further, in realistic tokamak equilibria it does not dramatically change

the numerical value of A'[see Eqs. (35) and (36)]. As discussed in Appendix B,

the form for 4" given by Eq. (19) reproduces reasonably accurately the numerical

results for a cylindrical plasma obtained by Furth, Rutherford and Selberg. 6

The instability properties of a particular rational surface are determined

by the value of the current gradient parameter k [given in Eq. (15)] evaluated at

the rational surface

Iq,oO" 1 _-__ rq _tod_hljI (45)

- ,_' = - 2mq" _ZZ_ m (dq/dr) B0 dr r = rs
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where the first expression is written for toroidal equilibria and the second

expression is valid for circular flux surface equilibria in a cylinder. The tearing

mode matching parameter for zero pressure gradient plasn_las is given by

a o = - 2m g'_'_-%._ cot(%._) , (46)
r--'---

where for circular flux surfaces _XX= 1/rs" The asymptotically small order

unity corrections to this leading order expansion are given in Appendix C.

Tearing instability is indicated when A" > 0, hence equation (46) predicts the

condition %.> 0.5 or

m

Iq_to_" 1
--'---T----

I q '/'X-_'_/gGX _ m (47)

as the threshold for a tearing instability with poloidal mode number m. In the

limit of circular flux surface plasmas this criterion is given by

q°rs_t° dJul > m (48)
IqoB----_ dr

As indicated in Figure 3, this threshold value is also predicted for plasmas with

non-zero plasma gradient, however the value of A" changes with _ away from the

tearing threshold point. The saturated island width as obtained by the relation

. a'(Wsa t) = 0 can be found from the expression given in Eq. (23). As shown in Fig.

2, this solution can be approximated to reasonable accuaracy by the relation
i

1
4.09 1 1 2"04rs (%. - _) , (49)

Wsat = 2m_(%.-2) = m

where Wsat is the saturated island half-width as a function of the parameter %.and

the second approximate solution is appropriate for circular flux surface plasmas.

The appearance of a macroscopic magnetic island in a plasma equilibrium

reduces the energy confinement time by a term proportional to the island

width. 34
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Since the asymptotic behavior of the ideal eigenfunctions is different in

non-zero beta plasmas as opposed to zero pressure plasmas, the matching data

for these two cases differ by a term proportional to the plasma pressure. In the

guise of the Rutherford regime of tearing mode evolution, this difference of the

matching data introduces a pressure gradient driven term in the island evolution

equation. A simple scaling argument reproduces the results of Ref. 29, which

derives the nonlinear analog of the Glasser effect of linear tearing mode

theory. 27'28 In this manner, the results of Sec. IV, reproduces the results of Ref.

30.

Although we have not tried to directly compare our tearing mode

matching parameter to experimental profiles, a couple of observations can be

made. The instability threshold, as predicted by Eq. (20), is easier to violate for

lower mode numbers. Hence, it would seem unlikely that the appearance of a

single island chain with helicity m/n = 4/3 (or 5/4), for instance, on TFTR can be

explained by the 4" drive from tearing mode theory, since this theory says that

the n = 2 and n =1 modes should generally be more unstable. An effect not

addressed in the present work is the bootstrap current free-energy source. 31'32

The neoclassical pressure gradient term is larger than the pressure/curvature

term in this work since it is of order _e = 2_toP/B 2 rather than the total _ =

2_toP/B 2 that entered here. 33 Since fluctuations in the bootstrap current produce

island producing instabilities in tokamaks, this effect could provide a possible

explanation for the observed islands in high performance tokamak discharges. 3
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Appendix A: Whittaker Functions

In this appendix, we compile some useful properties of Whittaker

functions from Refs. 19 and 35. Whittaker functions are solutions of the

. differential equation

d2u 1 k 1/4 - _t2

dX 2 + (-] + _ + X2 )u = 0 . (A1)

Equation (A1) has two linearly independent solutions given by

Mk/_(X ) = X_+0'5e-X/2_(_t-k+l/2, 2_t + 1;X) (A2)

Mk/_iL(X) = X--_+ 0"5e-X/2 _(-B-k+l/2,-2_t + 1; X) (A3)

where

0_X 0_(c_+1)X2 o_(o_+1)(o_+2)X3
• (0_,7;X) = 1 +-_ + 2! + 3-]-.+ "'" (A4)7 7(7+1) 7(7+1)(7+2)

is a degenerate hypergeometric function. When the parameter 2p = +1, +_2, ...,

the power series representation diverges, and these solutions are not valid.

However, it is possible to introduce Whittaker's function, defined by

r(-2.) r(2_t)

Wk/_(X) = F(1/2-g-k) Mk/_(x) + F(1/2 +_t-k) Mk/-B(X) (A5)

which is also a solution of (A1) when 2_t approaches an integer. The functions

Wk/,(X ) and W_k/,(-X ) are linearly independent solutions. Whittaker's

functions can be given by the integral relation

e-X/2 X1/2-B 7 -t t2_-1 . Xlk+_-l/2Wk/_(X)
F(1/2 - k + It) (] dt e [1. Tj . (A6)

,,...
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A convenient relation derivable from (A6) is

XdWk/_ - (k X - Ltt2 (k-1/2) 2] Wk.1/. (A7)dX - -

For the special case of _t = 1/2 (v = _ = 0 in the tearing mode problem), Wk/_ has

the small argument expansion

e-X/2

Wk/0.5(X)- {1 +

k Xp+I F(1-k+p)
E [_P(l+p) + _P(2+p)- _P(1-k+p)- lnX] } (A8)

p=0 p!(l+p)! F(1-k)

where _(x) = d In F(x)/dx is the Digamma-Psi function which satisfies the

properties _P(l+x) = LP(x)+ 1/x and _(1-x) = _(x) + _cot(_x).

For _t = 1/2 + v, with v not an integer, the functions Mk/_(X) and Mk/_B(X)

have a power series expansion at small X. Namely,

k_K_
Mk/0.5+v(X) = xl+V( 1- 2(I+v) X + ...) , (A9)

k
Mk/._0.5_v(X) = x-V(1 + N X + ...) ; (A10)2v

Mk/_0.5_v(X ) represents the large solution as X --_ 0, and Mk/0.5+v(X) represents

the small solution.

Appendix B: Stability of the Furth, Rutherford, and Selberg Currrent Profiles

In the classic' work by Furth, Rutherford and Selberg, 6 the stability of a

cylindrical, zero-_ plasma to tearing instability was examined. The set of current

profiles of the form

. Jo
(B1)

J l I(r) = [l+(r/a)2p]l+l/p
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was used, where p = 1, 2, 4 describes peaked, rounded and flattened current

profiles, respectively. Since the plasma is cylindrical, the poloidal magnetic field

and q-profile are given by B0(r ) ---(jor/2)[1 + (r/a)2P] -1/p, q(r) = (2Bo/Rc_o) [1+

2p,1/p
(r/a) ] , where Bo is the strength of the axial magnetic field and R o is the

periodicity length of the cylinder. Equation (21) predicts instability for the

rational surface with poloidal mode number m when the inequality given by
o,,

2(1+p)
[1 + (r/a) 2p] > m (B2)

is violated. The q-profile is parameterized by the integer p and the value of q on

the magnetic axis qo' Consequently, Eq. (B2) can be rewritten as constraints on

qo and p. Instability occurs for the mode m/n when the inequality

m p+l

2(1 + p)(qo )p > np , (B3)

is satisfied. For the peaked profile (p = 1), modes with m > 4 are predicted to be

always stable. The m/n = 2/1 mode is unstable when qo > 1; the m/n = 3/2

mode is unstable when qo > 9/8. The rounded profile (p = 2) has m > 6 modes

always stable and the flat profile has m > 10 modes always stable. These

observations are in basic agreement with the conclusions of Ref. 6 and the

• numerical results plotted in figures therein. Equation (B2) also indicates that the

closer the rational surface is to the magnetic axis of the cylinder, the more likely

instability will occur. Equation (B3) demonstrates that for this class of profiles,

instability is more likely for larger values of qo"

Appendix C: Order 1/m corrections to Ao

For simplicity, we consider cylindrical plasmas, so that the minor radius

serves as a flux function. Expanding the "inner" solution of Eq. (11) to first order

in 1/m yields the equation
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d2A1 1 K l+c dA 0 l+c
dX 2 - [4+x]A1 = - 2 dX - X-_A 0-_.(b+c)A 0' (C1)

where

rs .dill,-1 d 1 dill.

b = - _- B0 (--_-) _-_(Boo--_) ' (C2)

dq-1 d__ (C3)
c = rs (dr) dr2 ,

are dimensionless quantities evaluated at the rational surface. Since A0 satisfies

Eq. (16), we can rewrite Eq. (C1) as

1 d 2 d A1 1+c dA 0 1+c
m w _ N

Ao dX Ao dX Ao 2 dX X-_ Ao ;_(b + c)A o. (C4)

Integrating this equation twice, we obtain the solution

1+c
A (x) = Ao(X)(C1 - XT

X X"

1 .[dX'" 1+c4
+ _dX" A2(X')o [- X'" - ;_(b+c)] A_(X")} (C5)0 +oo

where the boundary condition AI(0 ) = C1Ao(0 ) is used and the +oo (-oo)

boundary of the integral refers to the solutions when X > 0 (< 0). The matching

parameter to first order in 1/m is given by

dA 1 dA 1
C1 1 lim {-_-(rs+¢ ) - --_-(rs-E )1 (C6)

A'= Ao(1- _--) + mA0(0)e_0

where Ao is the matching parameter of the lowest order solution, Eq. (19). From

Eq. (C5), it is easy to show that A" to first order in 1/m is given by

2
A'= A6 + r fR(0+)-fL(0-) ' (C7)

where
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0
1+c

fR(0+) = _dX [-X _- Mb+c)] A2R(X) , (C8)
oo

0
l+c 2

fL(0-) = [-Xq-- X(b+c)]AoL(X), (C9)
.,-oo

in which AoR(X) and AoL(X ) refer to the leading order solutions for X > 0 and X <

, 0, respectively. The first term, _, is defined in Eq. (18) and given by the

expression A6 = - (2m/r)_.cot(_ _.) for cylindrical plasmas. Substituting Eq. (17),

we obtain the matching condition to first order in l/m,

oo

lZ_" l+c ;dxX2---_= - rc%cot(_%) - m 4-{F2(1-%)W_/20 .5(X) - F2(l+%)W-_._ 0.5(X)}
0

m
0

The integrals can be reduced to functions of the parameter X. After a lengthy

calculation, Eq. (C10) is given by the simplified form

rA" b+c 2_:2% 3

_-_ = - _Xcot(_%) +
m sin2(x%)

l+c 3%
- m 2 {1+ _,2[_'(1-%)-_'(1+%)]} (Cll)

where LP'(x) = d_(x)/dx is the derivative of the Digamma-Psi function. The last

term is negative if %(1+c) > 0 and is therefore stabilizing for c > -1. The second

term is destabilizing (stabilizing) if X(b+ c) is positive (negative). Near the

leading order stability threshold _, = 1/2, the 1/m corrections can be evaluated.

The matching condition when % is close to 0.5 is given by

rA" _:2 1 1 _2 3
2m = -2-(_'-2) + m[-4 -(b+c) - _(1+c)]. (C12)
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Consequently, the correction terms change the marginal stability condition

slightly. It should be noted that for _. close to unity, the correction factors get

quite large. In fact, depending on the values for b and c, these terms may

become comparable to the leading order A', which suggests that the perturbation

theory presented here may not be accurate.

For the profiles of Appendix B, b+c = 2 + (p - 2)(qo/q)P and c + 1 = 2 +

(2p - 2)(qo/q)P for the mode resonant at the m/n = q surface and qo is the value

of q on axis. For these profiles, thus the last term is stabilizing and the second

term is destabilizing.
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Figure Captions

Fig. 1 - Eigenfunctions as given by Eq. (17) as a function of the strained variable

X. The three plots are given for the values _ = 0.4, K = 0.6, and _ = 0.8. As the

parameter _. becomes larger the difference in the derivative across X = 0 becomes

larger, indicating a larger A'.

Fig. 2 - The solution of the condition A'(fOsat) = 0 as a function of _. from the

solution to Eq. (23) for X > 0.5 (solid line). Also plotted is the analytic fit (dashed

line), ca = 4.09(_.- 0.5), which reproduces the more complex expression quite

well.
I

Fig. 3 - The functions A_ versus _. for a number of different values of v. They are

denoted by v = 0 (solid line), v = 0.1 (long dashes), v = 0.2 (short dashes), v = 0.3

(long dash-dots), v = 0.4 (short dash-dots). Note that the threshold condition for

all these cases is the same X = 0.5 as it is in the zero beta case.
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