An alternative host matrix based on iron phosphate glasses for the vitrification of specialized nuclear waste forms. 1998 annual progress report

PDF Version Also Available for Download.

Description

'Certain high level wastes (HLW) in the US contain components such as phosphates, heavy metals, and halides which make them poorly suited for disposal in borosilicate glasses. Iron phosphate glasses appear to be a technically feasible alternative to borosilicate glasses for vitrifying these HLWs. The iron phosphate glasses mentioned above and their nuclear wasteforms are relatively new, so little is known about their atomic structure, redox equilibria, structure-property relationships, and crystallization products and characteristics. The objective of this research is to gain such information for the binary iron-phosphate glasses as well as iron phosphate wasteforms so that a comprehensive scientific ... continued below

Physical Description

4 pages

Creation Information

Day, D.E.; Ray, C.S.; Marasinghe, G.K.; Karabulut, M. & Fang, X. June 1, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 33 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

'Certain high level wastes (HLW) in the US contain components such as phosphates, heavy metals, and halides which make them poorly suited for disposal in borosilicate glasses. Iron phosphate glasses appear to be a technically feasible alternative to borosilicate glasses for vitrifying these HLWs. The iron phosphate glasses mentioned above and their nuclear wasteforms are relatively new, so little is known about their atomic structure, redox equilibria, structure-property relationships, and crystallization products and characteristics. The objective of this research is to gain such information for the binary iron-phosphate glasses as well as iron phosphate wasteforms so that a comprehensive scientific assessment can be made of their usefulness in nuclear waste disposal. This report summarizes the work undertaken and completed in the first 20 months of a three year project. Approximately 250 samples, binary iron phosphate glasses and iron phosphate glasses containing one or two common nuclear waste components such as UO{sub 2} , Na{sub 2}O, Bi{sub 2}O{sub 3} , Cs{sub 2}O, SrO, and MoO{sub 3}, have been prepared. Weight loss has been used to measure the chemical durability and the redox equilibria between Fe(II) and Fe(III) has been investigated using Moessbauer spectroscopy. The atomic structure has been investigated using a variety of techniques including Mossbauer, Raman, X-ray absorption (XAS), and X-ray photoelectron (XPS) spectroscopies and neutron/high energy X-ray scattering. Glass forming and crystallization characteristics have been investigated using differential thermal analysis (DTA). In addition, information necessary for glass manufacturing such as suitable refractories and Joule heating parameters also have been obtained.'

Physical Description

4 pages

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE00013670
  • Report No.: EMSP-55110--98
  • Grant Number: NONE
  • DOI: 10.2172/13670 | External Link
  • Office of Scientific & Technical Information Report Number: 13670
  • Archival Resource Key: ark:/67531/metadc627611

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • June 1, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Jan. 9, 2018, 2:39 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 33

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Day, D.E.; Ray, C.S.; Marasinghe, G.K.; Karabulut, M. & Fang, X. An alternative host matrix based on iron phosphate glasses for the vitrification of specialized nuclear waste forms. 1998 annual progress report, report, June 1, 1998; Rolla, Missouri. (digital.library.unt.edu/ark:/67531/metadc627611/: accessed September 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.