EXPLORATORY INVESTIGATION AT A MACH NUMBER OF 5.20
OF THE LONGITUDINAL AERODYNAMIC CHARACTERISTICS
OF FLAT-BOTTOM BODIES

By Roy H. Lange

Langley Aeronautical Laboratory
Langley Field, Va.

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.
EXPLORATORY INVESTIGATION AT A MACH NUMBER OF 5.20
OF THE LONGITUDINAL AERODYNAMIC CHARACTERISTICS
OF FLAT-BOTTOM BODIES

By Roy H. Lange

SUMMARY

An exploratory investigation has been conducted at a Mach number of 5.20 to determine the longitudinal aerodynamic characteristics of a number of flat-bottom bodies which were investigated for possible hypersonic application. The bodies were tested at both positive and negative angles of attack to simulate flat-bottom and flat-top arrangements. Plan-form aspect ratios investigated ranged from 0.980 to 0.379, and the thicknesses of the bodies ranged from about 5 to 13 percent of the body length. Lift, drag, and pitching-moment data are presented herein and compared with predictions of shock-expansion theory for an angle-of-attack range sufficient to determine the maximum lift-drag ratio of each configuration. The Reynolds numbers ranged from about 2.42×10^6 to 3.75×10^6 based on body lengths of 7.75 inches and 12.00 inches, respectively.

INTRODUCTION

An interesting hypervelocity vehicle is the boost-glide missile. (See ref. 1.) Although investigations have been carried out at hypersonic speeds of a few body and wing-body configurations (see, for example, refs. 2 to 5), there is need for further research on this type of missile. The present report deals with the results of an exploratory investigation at a Mach number of 5.20 of the longitudinal aerodynamic characteristics of a number of simple body configurations of constant volume which may have application to the boost-glide missile. All configurations have one flat surface and were tested at both positive and negative angles of attack to simulate both flat-bottom and flat-top arrangements. The configurations investigated have triangular, half-elliptical, and trapezoidal plan forms. These plan forms were combined with triangular,
circular-arc, and trapezoidal cross sections. Plan-form aspect ratios investigated ranged from 0.980 to 0.379, and the thicknesses of the bodies ranged from about 5 to 13 percent of the body length. All bodies have blunt bases.

The investigation was conducted in the Langley gas dynamics laboratory at a Mach number of 5.20 and a test-section Reynolds number of 3.75×10^6 per foot. Lift, drag, and pitching-moment data are presented herein with a minimum of analysis.

SYMBOLS

α angle of attack, deg

C_L lift coefficient, $\frac{\text{Lift}}{\text{qS}}$

C_D drag coefficient, $\frac{\text{Drag}}{\text{qS}}$

C_m pitching-moment coefficient about nose of body, $\frac{\text{Pitching moment}}{\text{qS}l}$

x_{cp}/l center-of-pressure location, body lengths from nose

L/D lift-drag ratio

$(L/D)_{\text{max}}$ maximum lift-drag ratio

$C_{D_{\text{min}}}$ minimum drag coefficient

C_{D_f} skin-friction drag coefficient

$C_{L_{\alpha}}$ lift-curve slope, rate of change of lift coefficient with angle of attack, $\frac{\partial C_L}{\partial \alpha}$, per degree

q free-stream dynamic pressure, $\rho V^2/2$

S plan-form area

S_b base area

R_l Reynolds number based on body length
MODELS

The geometric characteristics of the bodies tested are given in figure 1. All bodies have the same volume. Bodies 1, 2, and 5 have simple triangular plan forms with triangular cross sections having widths of three times the height for body 1, five times the height for body 2, and 2.25 times the height for body 5. Body 3 is the same as body 2 for a distance of 6.667 inches from the nose; after this point a constant-area section is added. Body 4 is formed by the intersection of an inclined plane with the surface of a cylinder of 3.020-inch radius. The plane is inclined 4.76\(^\circ\) to the axis of the cylinder. Body 6 has a composite sweep plan form designed to approximate the plan form of body 4. Bodies 7 and 9 have 5\(^\circ\)-wedge center sections with triangular edges swept approximately at the Mach lines for the test Mach number of 5.20. Body 8 is the same as body 7 for a distance of 6 inches from the nose; after this point a constant-area section is added.

The models were constructed of Fiberglas and heat-resistant Paraplex and had very smooth finishes which did not deteriorate after repeated tests in the wind tunnel. The leading edges of the bodies had a thickness of about 0.012 inch. No noticeable deflections of the component parts of the models under load (maximum normal-force limit of strain-gage balance = 6 pounds) were noted during the tests.

Except for bodies 8 and 9, a 1/2-inch-diameter hole was drilled in and perpendicular to the base of each body for the purpose of mounting each body on the 1/2-inch-diameter sting attached to the externally mounted strain-gage balance. The body and sting were held together with set screws. The base of each body was about 1 inch upstream of the leading edge of a wedge-shaped shield (total angle, 20\(^\circ\)) which housed the
strain-gage balance. For bodies 8 and 9, which were too thin at the base for a 1/2-inch-diameter hole, a 1/4-inch by 1/2-inch sting having an adapter with a 1/2-inch hole at the end was attached at the base. The distance from the base of the body to the adapter was 1.75 inches. A 1/8-inch-diameter tube attached to the balance housing was made to project to within 1/16 inch of the base of each body for the measurement of the base pressure.

APPARATUS AND TESTS

The tests were conducted in a Langley gas dynamics jet which is of the intermittent type with a high-pressure reservoir and a vacuum sphere having a capacity of 36,000 cubic feet. A heat exchanger is used to heat the air to the desired stagnation temperature. The two-dimensional nozzle has a rectangular test section approximately 12 inches high and 9 inches wide. The nozzle was designed by the method of characteristics, with a correction made for boundary layer, and operates at an average Mach number of 5.20. A variable-area supersonic diffuser is provided, and the running time of the tests varied from about 6 minutes to a maximum of about 10 minutes, depending upon the model configuration and the angle-of-attack range. All tests were made at a stagnation pressure of 100-pounds-per-square-inch gage. A stagnation temperature of 250° F was maintained to avoid the possibility of liquefaction of the air in the test section. The Reynolds number of the tests was about 3.75×10^6 per foot.

The angle-of-attack range of the tests was from about -6° to 10° and was limited by the strain-gage-balance maximum normal force of 26 pounds. The tests were made at positive angles of attack to simulate flat-bottom arrangements and at negative angles of attack to simulate flat-top arrangements. At each angle of attack, measurements were made of the normal force, chord force, and pitching moment by means of a sting-supported external electrical strain-gage balance. The balance and model rotated on the angle-of-attack mechanism. The maximum design conditions for the balance are 26 pounds of normal force, 10 inch-pounds of pitching moment, and 1 pound of chord force. The base pressure was measured throughout the angle-of-attack range for each model. The angles of attack were determined from schlieren photographs of the models at each attitude and are accurate to ±0.1°.

The base pressures measured were used to calculate the chord force acting at the base of the bodies and the chord forces measured by the strain-gage balance were corrected to the condition of free-stream static pressure acting at the base.
PRESENTATION OF DATA

The results of the investigation are presented in table I and figures 2 to 10, and schlieren photographs of four of the body shapes are presented in figure 11 at angles of attack for maximum lift-drag ratio. For each body in figures 2 to 10 the variations of α, C_D, L/D, C_m, and x_{cp}/l with lift coefficient C_L are presented. Also presented in figures 2 to 10 for comparison purposes are the predictions of two-dimensional shock-expansion theory plus turbulent boundary-layer skin friction for the lift curve, the drag polar, and the variation of L/D with C_L.

The forces acting on the bodies were calculated by the use of shock-expansion theory. Conical-flow regions were ignored. The pressures acting on the upper surface of the bodies with triangular plan forms were determined by the angle that the inclined plane on the upper surface made with the relative wind - the ridge angle was not used. For body 4 the pressure was considered constant on the upper surface and was determined by the wedge angle along the plane of symmetry.

An effective Reynolds number was determined for each body in order that the skin-friction drag could be estimated by use of the method of Van Driest (ref. 6). For the triangular plan-form bodies the results of reference 7 were used where it was found for laminar boundary layers that a length equal to $9/16$ the length of the root chord of a triangular wing gives the average skin-friction coefficient. By similar reasoning, for turbulent boundary layers a length equal to 0.59 the length of the root chord was used (for which the skin friction varies inversely as the $1/4$ to $1/5$ power of the Reynolds number). For body 3, $9/16$ of the root chord of the triangular portion of the plan form plus the length of the rectangular portion was used, and for body 8 the average chord of the front portion plus the length of the rectangular portion was used. The average chord S/b was used for bodies 4, 6, 7, and 9. The lift and drag coefficients were computed by using both laminar and turbulent values of skin-friction coefficients; however, only the turbulent values are plotted on the figures since it was found that the drag coefficients including laminar boundary-layer skin friction were much lower than the experimental values.

SUMMARY OF RESULTS

No detailed discussion of the results of the investigation is attempted in this paper; however, the results of most interest are pointed out in this section.
The force-test results are summarized in the following table:

<table>
<thead>
<tr>
<th>Model body</th>
<th>Thickness, t/l</th>
<th>R_l</th>
<th>C_{L\alpha} (C_L = 0)</th>
<th>C_{D\text{min}}</th>
<th>(L/D)_{\text{max}} for model inverted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.127</td>
<td>3.12 x 10^6</td>
<td>0.0141</td>
<td>0.0084</td>
<td>5.45</td>
</tr>
<tr>
<td>2</td>
<td>0.098</td>
<td>3.12</td>
<td>0.0156</td>
<td>0.0077</td>
<td>5.50</td>
</tr>
<tr>
<td>3</td>
<td>0.055</td>
<td>3.73</td>
<td>0.0129</td>
<td>0.0053</td>
<td>5.85</td>
</tr>
<tr>
<td>4</td>
<td>0.083</td>
<td>3.12</td>
<td>0.0130</td>
<td>0.0058</td>
<td>6.14</td>
</tr>
<tr>
<td>5</td>
<td>0.111</td>
<td>3.75</td>
<td>0.0121</td>
<td>0.0069</td>
<td>5.50</td>
</tr>
<tr>
<td>6</td>
<td>0.071</td>
<td>3.09</td>
<td>0.0128</td>
<td>0.0058</td>
<td>6.07</td>
</tr>
<tr>
<td>7</td>
<td>0.088</td>
<td>2.86</td>
<td>0.0156</td>
<td>0.0066</td>
<td>5.80</td>
</tr>
<tr>
<td>8</td>
<td>0.052</td>
<td>3.16</td>
<td>0.0126</td>
<td>0.0046</td>
<td>6.30</td>
</tr>
<tr>
<td>9</td>
<td>0.088</td>
<td>2.42</td>
<td>0.0141</td>
<td>0.0061</td>
<td>6.30</td>
</tr>
</tbody>
</table>

The triangular plan-form bodies (bodies 1, 2, and 5) with the highest values of thickness ratio have the highest values of \(C_{D\text{min}} \) and, consequently, the lowest value of \((L/D)_{\text{max}} \). The lift-curve slope of body 2, however, is equal to the highest value obtained in the tests. It should be noted that the thickness, length, Reynolds number, and plan form are all variable, and the changes in aerodynamic characteristics result from all these variations.

The maximum lift-drag ratio is, of course, influenced by the nature of the boundary layer. Since there was some evidence of transition near the nose of the bodies in the schlieren photographs, and since the theoretical results assuming turbulent boundary layers agreed with the experiments, and since the addition of transition strips had no effect, it may be assumed that the boundary layer was largely turbulent.

Reducing the thickness ratio by incorporating a rectangular section in the plan form reduces \(C_{D\text{min}} \) but, at the same time, reduces \(C_{L\alpha} \). However, the overall effect is to increase \((L/D)_{\text{max}} \). (Compare bodies 2 and 3 and bodies 7 and 8.) Some of the increase in \((L/D)_{\text{max}} \) may result from the increase in Reynolds number \(R_l \) for bodies 3 and 8.

All bodies with the exception of body 8 have higher values of \((L/D)_{\text{max}} \) as flat-bottom bodies than as flat-top bodies; however, for bodies 7, 8, and 9, the differences in \((L/D)_{\text{max}} \) are small.

All bodies have a linear variation of pitching-moment coefficient about the nose with lift coefficient throughout the range of lift coefficients investigated. The changes in center-of-pressure location are generally small throughout the lift-coefficient range (except for points
near $C_L = 0$), with the largest variations being measured for bodies which have a change in slope of the upper surface in the streamwise direction.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

REFERENCES

<table>
<thead>
<tr>
<th>Model</th>
<th>a_{deg}</th>
<th>C_{l}</th>
<th>C_{D}</th>
<th>C_{m}</th>
<th>L/D</th>
<th>Model</th>
<th>a_{deg}</th>
<th>C_{l}</th>
<th>C_{D}</th>
<th>C_{m}</th>
<th>L/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body 1</td>
<td>-3.22</td>
<td>-0.0684</td>
<td>0.0204</td>
<td>0.0583</td>
<td>-4.34</td>
<td>Body 5</td>
<td>-6.03</td>
<td>-0.0568</td>
<td>0.0213</td>
<td>0.0652</td>
<td>-3.38</td>
</tr>
<tr>
<td></td>
<td>-2.00</td>
<td>-0.0723</td>
<td>0.0215</td>
<td>0.0675</td>
<td>-4.25</td>
<td></td>
<td>-5.98</td>
<td>-0.0636</td>
<td>0.0205</td>
<td>0.0677</td>
<td>-4.26</td>
</tr>
<tr>
<td></td>
<td>-1.89</td>
<td>-0.0568</td>
<td>0.0127</td>
<td>0.0373</td>
<td>-4.17</td>
<td></td>
<td>-6.19</td>
<td>-0.0721</td>
<td>0.0155</td>
<td>0.0667</td>
<td>-4.10</td>
</tr>
<tr>
<td></td>
<td>-2.12</td>
<td>-0.0303</td>
<td>0.0065</td>
<td>0.0257</td>
<td>-4.19</td>
<td></td>
<td>-4.70</td>
<td>-0.0597</td>
<td>0.0144</td>
<td>0.0583</td>
<td>-4.34</td>
</tr>
<tr>
<td></td>
<td>-3.60</td>
<td>-0.0036</td>
<td>0.0004</td>
<td>0.0043</td>
<td>-4.3</td>
<td></td>
<td>-1.68</td>
<td>-0.0453</td>
<td>0.0054</td>
<td>0.0392</td>
<td>-4.37</td>
</tr>
<tr>
<td></td>
<td>5.06</td>
<td>-0.0235</td>
<td>0.0090</td>
<td>0.0317</td>
<td>2.12</td>
<td></td>
<td>-0.02</td>
<td>-0.0305</td>
<td>0.0036</td>
<td>0.0011</td>
<td>-3.76</td>
</tr>
<tr>
<td></td>
<td>6.20</td>
<td>-0.0407</td>
<td>0.0098</td>
<td>0.0386</td>
<td>5.12</td>
<td></td>
<td>4.11</td>
<td>-0.0399</td>
<td>0.0071</td>
<td>0.0051</td>
<td>-1.12</td>
</tr>
<tr>
<td></td>
<td>7.13</td>
<td>-0.0594</td>
<td>0.0116</td>
<td>0.0311</td>
<td>5.12</td>
<td></td>
<td>2.68</td>
<td>-0.0260</td>
<td>0.0096</td>
<td>0.0029</td>
<td>-2.9</td>
</tr>
<tr>
<td></td>
<td>6.37</td>
<td>-0.0768</td>
<td>0.0182</td>
<td>0.0299</td>
<td>5.12</td>
<td></td>
<td>2.70</td>
<td>-0.0388</td>
<td>0.0076</td>
<td>0.0012</td>
<td>2.55</td>
</tr>
<tr>
<td>Body 2</td>
<td>-3.03</td>
<td>-0.0631</td>
<td>0.0116</td>
<td>0.0363</td>
<td>-6.59</td>
<td>Body 6</td>
<td>-3.73</td>
<td>-0.0663</td>
<td>0.0130</td>
<td>0.0309</td>
<td>-5.09</td>
</tr>
<tr>
<td></td>
<td>-3.00</td>
<td>-0.0566</td>
<td>0.0111</td>
<td>0.0376</td>
<td>-6.11</td>
<td></td>
<td>-1.23</td>
<td>-0.0506</td>
<td>0.0120</td>
<td>0.0250</td>
<td>-5.24</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>-0.0329</td>
<td>0.0093</td>
<td>0.0265</td>
<td>-4.32</td>
<td></td>
<td>2.08</td>
<td>-0.0409</td>
<td>0.0085</td>
<td>0.0114</td>
<td>-4.77</td>
</tr>
<tr>
<td></td>
<td>1.35</td>
<td>-0.0213</td>
<td>0.0080</td>
<td>0.0264</td>
<td>-2.67</td>
<td></td>
<td>2.13</td>
<td>-0.0594</td>
<td>0.0181</td>
<td>0.0649</td>
<td>5.18</td>
</tr>
<tr>
<td></td>
<td>8.35</td>
<td>-0.0261</td>
<td>0.0084</td>
<td>0.0310</td>
<td>3.18</td>
<td></td>
<td>10.18</td>
<td>-0.1111</td>
<td>0.0235</td>
<td>-0.791</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>5.85</td>
<td>-0.0261</td>
<td>0.0084</td>
<td>0.0310</td>
<td>3.18</td>
<td></td>
<td>9.75</td>
<td>-0.0941</td>
<td>0.0181</td>
<td>-0.659</td>
<td>5.18</td>
</tr>
<tr>
<td></td>
<td>5.88</td>
<td>-0.0689</td>
<td>0.0096</td>
<td>0.0230</td>
<td>5.08</td>
<td></td>
<td>1.38</td>
<td>-0.0506</td>
<td>0.0120</td>
<td>0.0250</td>
<td>-5.24</td>
</tr>
<tr>
<td>Body 3</td>
<td>3.75</td>
<td>-0.0721</td>
<td>0.0332</td>
<td>0.0876</td>
<td>5.47</td>
<td></td>
<td>-1.23</td>
<td>-0.0595</td>
<td>0.0317</td>
<td>0.0171</td>
<td>-4.77</td>
</tr>
<tr>
<td></td>
<td>7.02</td>
<td>-0.0361</td>
<td>0.0357</td>
<td>0.0465</td>
<td>5.25</td>
<td></td>
<td>-2.08</td>
<td>-0.0409</td>
<td>0.0085</td>
<td>0.0114</td>
<td>-4.77</td>
</tr>
<tr>
<td></td>
<td>1.77</td>
<td>-0.0087</td>
<td>0.0053</td>
<td>0.0016</td>
<td>1.62</td>
<td></td>
<td>-2.08</td>
<td>-0.0409</td>
<td>0.0085</td>
<td>0.0114</td>
<td>-4.77</td>
</tr>
<tr>
<td></td>
<td>2.85</td>
<td>-0.0599</td>
<td>0.0099</td>
<td>0.0159</td>
<td>1.37</td>
<td></td>
<td>5.43</td>
<td>-0.0258</td>
<td>0.0097</td>
<td>-0.086</td>
<td>6.06</td>
</tr>
<tr>
<td></td>
<td>4.18</td>
<td>-0.0319</td>
<td>0.0088</td>
<td>-0.0238</td>
<td>4.66</td>
<td></td>
<td>5.53</td>
<td>-0.0257</td>
<td>0.0097</td>
<td>-0.086</td>
<td>6.06</td>
</tr>
<tr>
<td></td>
<td>5.60</td>
<td>-0.0477</td>
<td>0.0096</td>
<td>0.0371</td>
<td>5.80</td>
<td></td>
<td>6.95</td>
<td>-0.0764</td>
<td>0.0128</td>
<td>0.0695</td>
<td>5.79</td>
</tr>
<tr>
<td></td>
<td>6.95</td>
<td>-0.0764</td>
<td>0.0128</td>
<td>0.0695</td>
<td>5.79</td>
<td></td>
<td>6.00</td>
<td>-0.0680</td>
<td>0.0113</td>
<td>-0.392</td>
<td>6.02</td>
</tr>
<tr>
<td>Body 4</td>
<td>-3.92</td>
<td>-0.0671</td>
<td>0.0126</td>
<td>0.0584</td>
<td>-5.33</td>
<td>Body 7</td>
<td>-4.62</td>
<td>-0.0799</td>
<td>0.0132</td>
<td>-0.698</td>
<td>-6.05</td>
</tr>
<tr>
<td></td>
<td>-1.92</td>
<td>-0.0697</td>
<td>0.0095</td>
<td>0.0288</td>
<td>-5.21</td>
<td></td>
<td>-1.13</td>
<td>-0.0566</td>
<td>0.0092</td>
<td>0.0225</td>
<td>-5.07</td>
</tr>
<tr>
<td></td>
<td>-1.80</td>
<td>-0.0351</td>
<td>0.0076</td>
<td>0.0202</td>
<td>-4.02</td>
<td></td>
<td>0.03</td>
<td>-0.0892</td>
<td>0.0075</td>
<td>0.0117</td>
<td>-3.78</td>
</tr>
<tr>
<td></td>
<td>-1.87</td>
<td>-0.0903</td>
<td>0.0066</td>
<td>-0.113</td>
<td>-1.15</td>
<td></td>
<td>3.00</td>
<td>-0.0710</td>
<td>0.0051</td>
<td>0.0080</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>2.75</td>
<td>-0.0101</td>
<td>0.0059</td>
<td>-0.0682</td>
<td>1.71</td>
<td></td>
<td>4.22</td>
<td>-0.0315</td>
<td>0.0070</td>
<td>-0.0399</td>
<td>4.90</td>
</tr>
<tr>
<td></td>
<td>4.18</td>
<td>-0.0294</td>
<td>0.0089</td>
<td>-0.0933</td>
<td>3.96</td>
<td></td>
<td>5.52</td>
<td>-0.0309</td>
<td>0.0089</td>
<td>-0.0386</td>
<td>5.19</td>
</tr>
<tr>
<td></td>
<td>5.08</td>
<td>-0.0360</td>
<td>0.0078</td>
<td>-0.0257</td>
<td>5.59</td>
<td></td>
<td>6.85</td>
<td>-0.0711</td>
<td>0.0118</td>
<td>-0.0452</td>
<td>6.31</td>
</tr>
</tbody>
</table>
Figure 1.- Geometric characteristics of bodies investigated at $M = 5.20$. All dimensions are in inches except where noted.
Figure 1.- Continued.
(i) Body 9.

Figure 1.- Concluded.
Figure 2.- Longitudinal aerodynamic characteristics of body 1 at $M = 5.20$.

Two-dimensional shock-expansion theory + turbulent skin friction, $C_D = 0.0047$.

CL, deg

CD

$-6 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0$

$-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.10$

$-4 -2 0 2 4 6 8 10$
Figure 2.- Concluded.
Figure 3.- Longitudinal aerodynamic characteristics of body 2 at $M = 5.20$.

---Two-dimensional shock-expansion theory + turbulent skin friction. $C_D = 0.0044$.

---Confidential---

NACA RM L56E30
Figure 3. Concluded.
Figure 4. - Longitudinal aerodynamic characteristics of body 3 at M = 5.20.
Two-dimensional shock-expansion theory + turbulent skin friction $C_D = 0.0040$.

Figure 4. Concluded.
Figure 5.- Longitudinal aerodynamic characteristics of body 4 at $M = 5.20$.
Two-dimensional shock-expansion theory + turbulent skin friction, $C_D = 0.0043$.

Figure 5.- Concluded.
Figure 6.- Longitudinal aerodynamic characteristics of body 5 at $M = 5.20$.

--- Two-dimensional shock-expansion theory + turbulent skin friction. $C_{Df} = 0.0047$.

C_D vs. C_L and α vs. C_L graphs.
Figure 6: Concluded.
Figure 7.- Longitudinal aerodynamic characteristics of body 6 at $M = 5.20$.
Two-dimensional shock-expansion theory + turbulent skin friction. $C_{Df} = 0.0040$.

Figure 7.- Concluded.
Figure 8. - Longitudinal aerodynamic characteristics of body 7 at $M = 5.20$.
Two-dimensional shock-expansion theory, turbulent skin friction. $C_D = 0.0044$.

Figure 8.- Concluded.
Figure 9. - Longitudinal aerodynamic characteristics of body 8 at M = 5.20.
Figure 9.- Concluded.
Figure 10.- Longitudinal aerodynamic characteristics of body 9 at \(M = 5.20 \).
Figure 10.- Concluded.
Figure 11.- Schlieren photographs of four bodies at angles of attack for maximum lift-drag ratio.