Theory of matrix and fracture flow regimes in unsaturated, fractured porous media

PDF Version Also Available for Download.

Description

The flow behavior of a two-dimensional, unsaturated fracture-matrix system is characterized by a critical flux q*{sub f} = {phi}(S{sub s} {minus} S{sub i})D{sub m} where {phi} is matrix porosity, S{sub s} maximum matrix saturation, S{sub i} initial saturation, and D{sub m} matrix imbibition diffusivity constant. If the flux q{sub f} into the fracture satisfies q{sub f} {much_gt} q*{sub f}, the flow field is fracture-dominated; whereas, if q{sub f} {much_lt} q*{sub f}, the flow is matrix-dominated, and the system behaves as a single equivalent medium with capillary equilibrium between fracture and matrix. If the fracture entrance is ponded, the critical fracture ... continued below

Physical Description

29 p.

Creation Information

Nitao, J.J. January 1, 1991.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The flow behavior of a two-dimensional, unsaturated fracture-matrix system is characterized by a critical flux q*{sub f} = {phi}(S{sub s} {minus} S{sub i})D{sub m} where {phi} is matrix porosity, S{sub s} maximum matrix saturation, S{sub i} initial saturation, and D{sub m} matrix imbibition diffusivity constant. If the flux q{sub f} into the fracture satisfies q{sub f} {much_gt} q*{sub f}, the flow field is fracture-dominated; whereas, if q{sub f} {much_lt} q*{sub f}, the flow is matrix-dominated, and the system behaves as a single equivalent medium with capillary equilibrium between fracture and matrix. If the fracture entrance is ponded, the critical fracture hydraulic conductivity K*{sub f}, or corresponding critical aperture 2b* from the ``cubic law,`` controls the flow behavior instead of the critical flux. Rocks with fracture apertures 2b that are sufficiently large, b{sup 3} {much_gt} b*{sup 3}, have flow that is fracture-dominated while rocks with small aperture fractures, b{sup 3} {much_lt} b*{sup 3}, will be matrix-dominated. Numerical modeling verifies the theory and tests approximate analytical solutions predicting fracture front movement. 15 refs., 7 figs., 4 tabs.

Physical Description

29 p.

Notes

INIS; OSTI as DE91008065

Source

  • 2. annual American Nuclear Society (ANS) international high level radioactive waste management conference, Las Vegas, NV (United States), 28 Apr - 3 May 1991

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE91008065
  • Report No.: UCRL-JC--104933
  • Report No.: CONF-910435--51
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 138016
  • Archival Resource Key: ark:/67531/metadc627522

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1991

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 23, 2016, 12:39 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Nitao, J.J. Theory of matrix and fracture flow regimes in unsaturated, fractured porous media, article, January 1, 1991; California. (digital.library.unt.edu/ark:/67531/metadc627522/: accessed November 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.