The design of a liquid lithium lens for a muon collider.

PDF Version Also Available for Download.

Description

The last stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system uses a large ({approximately}0.5 MA) pulsed current through liquid lithium to focus the beam while energy loss in the lithium removes momentum which is replaced by linacs. The beam optics are designed to maximize the 6 dimensional transmission from one lens to the next while minimizing emittance growth. The mechanical design of the lithium vessel is constrained by a pressure pulse due to the sudden ohmic heating, and the stress on the Be window. The authors describe beam optics, the liquid lithium ... continued below

Physical Description

5 p.

Creation Information

Balbekov, V.; Geer, S.; Hassanein, A.; Holtkamp, N.; Lebrun, P.; Neuffer, D. et al. March 26, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The last stage of ionization cooling for the muon collider requires a multistage liquid lithium lens. This system uses a large ({approximately}0.5 MA) pulsed current through liquid lithium to focus the beam while energy loss in the lithium removes momentum which is replaced by linacs. The beam optics are designed to maximize the 6 dimensional transmission from one lens to the next while minimizing emittance growth. The mechanical design of the lithium vessel is constrained by a pressure pulse due to the sudden ohmic heating, and the stress on the Be window. The authors describe beam optics, the liquid lithium pressure vessel, pumping, power supplies, as well as the overall optimization of the system.

Physical Description

5 p.

Notes

INIS; OSTI as DE00011748

Medium: P; Size: 5 pages

Source

  • 1999 Particle Accelerator Conference, New York, NY (US), 03/29/1999--04/02/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL-HEP-CP-99-29
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11748
  • Archival Resource Key: ark:/67531/metadc627515

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 26, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 12:17 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Balbekov, V.; Geer, S.; Hassanein, A.; Holtkamp, N.; Lebrun, P.; Neuffer, D. et al. The design of a liquid lithium lens for a muon collider., article, March 26, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc627515/: accessed September 22, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.