Ignition target design and robustness studies for the National Ignition Facility

PDF Version Also Available for Download.

Description

Recent results are presented from two-dimensional LASNEX calculations of the indirectly driven hohlraum and ignition capsules proposed for the National Ignition Facility (NIF). The calculations concentrate on two capsule designs, the baseline design which has a bromine-doped plastic ablator, and the beryllium design which has a copper-doped beryllium ablator. Both capsules have a cryogenic fuel layer. Primary emphasis in these calculations is placed upon robustness studies detailing various sensitivities. These studies fall naturally into two categories, those performed with integrated modeling where the capsule, hohlraum, and laser rays all are modeled simultaneously with the laser power levels as the only ... continued below

Physical Description

30 p.

Creation Information

Krauser, W.J.; Hoffman, N.M. & Wilson, D.C. December 1, 1995.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publishers

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Recent results are presented from two-dimensional LASNEX calculations of the indirectly driven hohlraum and ignition capsules proposed for the National Ignition Facility (NIF). The calculations concentrate on two capsule designs, the baseline design which has a bromine-doped plastic ablator, and the beryllium design which has a copper-doped beryllium ablator. Both capsules have a cryogenic fuel layer. Primary emphasis in these calculations is placed upon robustness studies detailing various sensitivities. These studies fall naturally into two categories, those performed with integrated modeling where the capsule, hohlraum, and laser rays all are modeled simultaneously with the laser power levels as the only energy input, and those performed in a capsule-only mode where an externally imposed drive is applied to the exterior of the ignition capsule and only the capsule performance is modeled. Integrated modeling calculations address sensitivities to, e.g., the laser pointing; among other things, capsule-only calculations address yield degradation due to the growth of hydrodynamic instabilities seeded by initial surface roughnesses on the capsules. Limitations of the calculational models and directions for future research are discussed. The results of the robustness studies performed to date enhance the authors` confidence that the NIF can achieve ignition and produce 10--15 MJ of capsule yield with one or more capsule designs.

Physical Description

30 p.

Notes

INIS; OSTI as DE96003149

Source

  • 37. annual meeting of the American Physical Society Division of Plasma Physics, Louisville, KY (United States), 6-10 Nov 1995

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE96003149
  • Report No.: LA-UR--95-3886
  • Report No.: CONF-951182--3
  • Grant Number: W-7405-ENG-36;W-7405-ENG-48
  • DOI: 10.2172/161545 | External Link
  • Office of Scientific & Technical Information Report Number: 161545
  • Archival Resource Key: ark:/67531/metadc627497

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 31, 2016, 6:27 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 2

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Krauser, W.J.; Hoffman, N.M. & Wilson, D.C. Ignition target design and robustness studies for the National Ignition Facility, report, December 1, 1995; New Mexico. (digital.library.unt.edu/ark:/67531/metadc627497/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.