Generation of x-ray pulses with rapid rise times to pump inner-shell photo-ionized x-ray lasing in carbon at 45 {angstrom}

PDF Version Also Available for Download.

Description

An investigation of the rapid rise time of x-ray emission from targets heated by an ultrashort-pulse high-intensity optical laser was conducted for use as a pump for inner-shell photo-ionized x-ray lasing. Results of x-ray rise times from instantaneously heated Au rod targets show little benefit for using optical pulse widths less than 30 fs. Gain calculations for inner-shell photo-ionized lasing show that large gains can be obtained for pulse widths between 30 and 100 fs. Calculated spectra, using the hydrodynamic/atomic kinetics code LASNEX, from a 1 J, 65 fs FWHM pulse optical laser incident on a structured Au target gave ... continued below

Physical Description

6 p.

Creation Information

Moon, S.J. & Eder, D.C. July 28, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

An investigation of the rapid rise time of x-ray emission from targets heated by an ultrashort-pulse high-intensity optical laser was conducted for use as a pump for inner-shell photo-ionized x-ray lasing. Results of x-ray rise times from instantaneously heated Au rod targets show little benefit for using optical pulse widths less than 30 fs. Gain calculations for inner-shell photo-ionized lasing show that large gains can be obtained for pulse widths between 30 and 100 fs. Calculated spectra, using the hydrodynamic/atomic kinetics code LASNEX, from a 1 J, 65 fs FWHM pulse optical laser incident on a structured Au target gave a gain of 1 1.5 cm{sup {minus}1} in C at 45 {angstrom}.

Physical Description

6 p.

Notes

INIS; OSTI as DE96000337

Source

  • 40. annual meeting of the Society of Photo-Optical Instrumentation Engineers, San Diego, CA (United States), 9-14 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96000337
  • Report No.: UCRL-JC--118103
  • Report No.: CONF-950793--40
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 109656
  • Archival Resource Key: ark:/67531/metadc627418

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 28, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 18, 2016, 5:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moon, S.J. & Eder, D.C. Generation of x-ray pulses with rapid rise times to pump inner-shell photo-ionized x-ray lasing in carbon at 45 {angstrom}, article, July 28, 1995; California. (digital.library.unt.edu/ark:/67531/metadc627418/: accessed September 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.