The Role of Activator-Activator Interactions In Reducing in Low-Voltage-Cathodoluminescence Efficiency in Eu and Tb Doped Phosphors

PDF Version Also Available for Download.

Description

High resolution measurements of spectrally resolved cathodoluminescence (CL) decay have been made in several commercial and experimental phosphors doped with Eu and Tb at beam energies ranging from 0.8 to 4 keV. CL emission from the lowest two excited states of both rare earth activators was compared to the decay of photoluminescence (PL) after pulsed laser excitation. We find that, at long times after the cessation of electron excitation, the CL decay rates are comparable to those measured in PL, at short times, the decay process is considerably faster and has a noticeable dependence on the energy of the electron ... continued below

Physical Description

16 p.

Creation Information

SEAGER,CARLETON H. & TALLANT,DAVID R. December 8, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

High resolution measurements of spectrally resolved cathodoluminescence (CL) decay have been made in several commercial and experimental phosphors doped with Eu and Tb at beam energies ranging from 0.8 to 4 keV. CL emission from the lowest two excited states of both rare earth activators was compared to the decay of photoluminescence (PL) after pulsed laser excitation. We find that, at long times after the cessation of electron excitation, the CL decay rates are comparable to those measured in PL, at short times, the decay process is considerably faster and has a noticeable dependence on the energy of the electron beam. These beam energy effects are largest for the higher excited states and for phosphors with larger activator concentrations. Measurements of the experimental phosphors over a range of activator fractions from 0.1 to 0.002 show that the beam energy dependence of the steady-state CL efficiency is larger for higher excited states and weakens as the activator concentration is reduced. The latter effect is strongest for Y{sub 2}SiO{sub 5}:Tb, but also quite evident in Y{sub 2}O{sub 3}:Eu. We suggest that the electron beam dependence of both the decay lifetimes and the steady state CL efficiency may be due to interaction of nearby excited states which occurs as a result of the large energy deposition rate for low energy electrons. This picture-for non-radiative quenching of rare earth emission is an excited state analog of the well-known (ground state-excited state) concentration quenching mechanism.

Physical Description

16 p.

Notes

INIS; OSTI as DE00015166

Medium: P; Size: 16 pages

Source

  • Journal Name: Applied Physics Letters; Other Information: Submitted to Applied Physics Letters

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-3123J
  • Grant Number: AC04-94AL85000
  • DOI: 10.1063/1.123638 | External Link
  • Office of Scientific & Technical Information Report Number: 15166
  • Archival Resource Key: ark:/67531/metadc627371

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 8, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2017, 3:23 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

SEAGER,CARLETON H. & TALLANT,DAVID R. The Role of Activator-Activator Interactions In Reducing in Low-Voltage-Cathodoluminescence Efficiency in Eu and Tb Doped Phosphors, article, December 8, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc627371/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.