Seismic evaluation of lead caves using no-tension discrete model with interface elements

PDF Version Also Available for Download.

Description

This paper investigates quasi-static behavior of lead cave walls radiation shields made by stacking lead bricks. The bricks have high stiffness, whereas the joints are weak and incapable of supporting tension. Global behavior of this kind of wall is strongly influenced by size friction coefficient of the brick elements. The general finite element code ANSYS was used for the analysis of the lead caves. A series of 2-D models that spanned the range of height-to-width aspect ratios of the cave wall were constructed. Two types of contact elements were incorporated in the model. The point-to-point contact element was used to ... continued below

Physical Description

8 p.

Creation Information

Khaleel, M.A.; Deibler, J.E. & Koontz, D.A. July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Pacific Northwest Laboratory
    Publisher Info: Pacific Northwest Lab., Richland, WA (United States)
    Place of Publication: Richland, Washington

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper investigates quasi-static behavior of lead cave walls radiation shields made by stacking lead bricks. The bricks have high stiffness, whereas the joints are weak and incapable of supporting tension. Global behavior of this kind of wall is strongly influenced by size friction coefficient of the brick elements. The general finite element code ANSYS was used for the analysis of the lead caves. A series of 2-D models that spanned the range of height-to-width aspect ratios of the cave wall were constructed. Two types of contact elements were incorporated in the model. The point-to-point contact element was used to represent contact in the horizontal direction. This element permits either compression in the direction normal to the surfaces or opening of a gap. The point-to-surface contact element was chosen to represent contact in the vertical direction. This element allows sliding in addition to the compression or gap formation normal to the surface. A series of static analyses were performed for each model. A l-g. vertical acceleration representing gravity was applied. The lateral acceleration was increased until the solution would not converge. This acceleration is defined as the critical lateral acceleration. This was achieved with a set of load steps with increasing lateral load. The critical acceleration was found to depend on the wall aspect ratio. For a wall with an aspect ratio up to three, the maximum acceleration is above the required 0.1 g. The wall failure mechanisms were also identified based on the numerical results. The two failure modes are the rotation and loss of interlocking among the blocks or silding of upper layers of the wall.

Physical Description

8 p.

Notes

INIS; OSTI as DE95016798

Source

  • Joint American Society of Mechanical Engineers (ASME)/Japan Society of Mechanical Engineers (JSME) pressure vessels and piping conference, Honolulu, HI (United States), 23-27 Jul 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95016798
  • Report No.: PNL-SA--25829
  • Report No.: CONF-950740--82
  • Grant Number: AC06-76RL01830
  • Office of Scientific & Technical Information Report Number: 100402
  • Archival Resource Key: ark:/67531/metadc627368

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 7, 2016, 4:48 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 9

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Khaleel, M.A.; Deibler, J.E. & Koontz, D.A. Seismic evaluation of lead caves using no-tension discrete model with interface elements, article, July 1, 1995; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc627368/: accessed August 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.