Characterization techniques to validate models of density variations in pressed powder compacts

PDF Version Also Available for Download.

Description

Techniques for characterizing density gradients generated during typical powder compaction processes are reviewed and several are evaluated. The techniques reviewed are ultrasonic velocity measurements, laser ultrasonic velocity measurements, x-ray radiography, autoradiography, computer tomography (CT), magnetic resonance imaging (MRI), and simple image analysis of polished cross-sections. Experimental results are reported for all of these techniques except autoradiography, CT and MRI. The test specimens examined were right circular cylinders of a high length/diameter ratio (to ensure significant density variation) pressed from commercial spray-dried alumina powders. Although the density gradients could be detected with all four techniques, ultrasonic velocity measurements gave the best ... continued below

Physical Description

16 p.

Creation Information

Garino, T.; Mahoney, M.; Readey, M.; Ewsuk, K.; Gieske, J.; Stoker, G. et al. July 1, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Techniques for characterizing density gradients generated during typical powder compaction processes are reviewed and several are evaluated. The techniques reviewed are ultrasonic velocity measurements, laser ultrasonic velocity measurements, x-ray radiography, autoradiography, computer tomography (CT), magnetic resonance imaging (MRI), and simple image analysis of polished cross-sections. Experimental results are reported for all of these techniques except autoradiography, CT and MRI. The test specimens examined were right circular cylinders of a high length/diameter ratio (to ensure significant density variation) pressed from commercial spray-dried alumina powders. Although the density gradients could be detected with all four techniques, ultrasonic velocity measurements gave the best contour map of gradients and is therefore most suitable for model validation. On the other hand, it was concluded that x-ray radiography is preferable in situations where cost and/or number of samples are more important that high resolution.

Physical Description

16 p.

Notes

OSTI as DE95015438

Source

  • 27. international technical conference of the Society for the Advancement of Material and Process Engineering (SAMPE): diversity into the next century, Albuquerque, NM (United States), 9-12 Oct 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95015438
  • Report No.: SAND--95-1615C
  • Report No.: CONF-951033--12
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 100203
  • Archival Resource Key: ark:/67531/metadc627366

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 14, 2016, 7:27 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Garino, T.; Mahoney, M.; Readey, M.; Ewsuk, K.; Gieske, J.; Stoker, G. et al. Characterization techniques to validate models of density variations in pressed powder compacts, article, July 1, 1995; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc627366/: accessed December 18, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.