Atmospheric chemistry effects of the 1998 Mexican/Central American fires measured in central New Mexico USA.

PDF Version Also Available for Download.

Description

Atmospheric effects from large fires have received a great deal of interest recently, especially when the fires have the potential to effect human health when the plumes are transported long distances over areas of high population density. Examples are the recent large fires in Southeast Asia in 1997 (1) and the wildfires occurring in southern Mexico and Central America that were manifested in decreased visibility and high aerosol concentrations in the United States at distances of 2500-4000 km from the fires. In addition to fine aerosols, these biomass fires have the potential to produce and transport large quantities of oxygenated ... continued below

Physical Description

7 p.

Creation Information

Popp, C. J. December 16, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Atmospheric effects from large fires have received a great deal of interest recently, especially when the fires have the potential to effect human health when the plumes are transported long distances over areas of high population density. Examples are the recent large fires in Southeast Asia in 1997 (1) and the wildfires occurring in southern Mexico and Central America that were manifested in decreased visibility and high aerosol concentrations in the United States at distances of 2500-4000 km from the fires. In addition to fine aerosols, these biomass fires have the potential to produce and transport large quantities of oxygenated organic species such as aldehydes, ketones and carboxylic acids, hydrocarbons, and sulfate and nitrate species. Most of the literature reports dealing with products of biomass burning have been related to fireplace and wood burning stove emissions (2,3) and with local effects from forest fires(4). The recent super-large fires occurring in Indonesia and Mexico/Central America also bring about the issue of atmospheric reactivity because long-range transport affords long reaction times for photochemical reactions, wet and dry deposition and surface reactions on the aerosol particles. The smoke/haze conditions prompted considerable concern among the general population in New Mexico regarding health hazards and a large number of calls to the Albuquerque, NM Air Quality Division which reported the PM{sub 10} samples collected showed no significant increase in mass(5). The conclusion was that the particles were very fine and therefore had considerable influence on the visibility but did not violate health standards. In this study, organic and inorganic chemical species in the gaseous and aerosol phases have been identified and quantified under non-smoky and smoky conditions in Central New Mexico approximately 3000 km from the source of the fires.

Physical Description

7 p.

Notes

OSTI as DE00011189

Medium: P; Size: 7 pages

Source

  • American Chemical Society Meeting, Anaheim, CA (US), 03/21/1998--03/25/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ER/CP-98005
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11189
  • Archival Resource Key: ark:/67531/metadc627336

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 16, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 3:08 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Popp, C. J. Atmospheric chemistry effects of the 1998 Mexican/Central American fires measured in central New Mexico USA., article, December 16, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc627336/: accessed October 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.