Fate of neptunium in an anaerobic, methanogenic microcosm.

PDF Version Also Available for Download.

Description

Neptunium is found predominantly as Np(IV) in reducing environments, but Np(V) in aerobic environments. However, currently it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. In order to evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosminoculated with anaerobic sediments from a metal-contaminated fresh water lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np ... continued below

Physical Description

11 p.

Creation Information

Banaszak, J. E. December 21, 1998.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Neptunium is found predominantly as Np(IV) in reducing environments, but Np(V) in aerobic environments. However, currently it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. In order to evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosminoculated with anaerobic sediments from a metal-contaminated fresh water lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np volubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbian y produced Mn(II/HI) and Fe(II) may serve as electron donors for Np reduction.

Physical Description

11 p.

Notes

OSTI as DE00010874

Medium: P; Size: 11 pages

Source

  • MRS 1998 Fall Meeting, Boston, MA (US), 11/30/1998--12/04/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/CMT/CP-96774
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 10874
  • Archival Resource Key: ark:/67531/metadc627309

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 21, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 6, 2017, 7:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 10

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Banaszak, J. E. Fate of neptunium in an anaerobic, methanogenic microcosm., article, December 21, 1998; Illinois. (digital.library.unt.edu/ark:/67531/metadc627309/: accessed October 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.