Evaluation of Options for CO₂ Capture/Utilization/Disposal

Authors:
 David K. Schmalzer
 Richard D. Doctor

Contractor:
 Argonne National Laboratory
 9700 S. Cass
 Argonne, Illinois 60439

Contract Number:
 DE-92MC29220

Conference Title:
 Advanced Coal-Fired Power Systems '95 Review Meeting

Conference Location:
 Morgantown, West Virginia

Conference Dates:
 June 27-29, 1995

Conference Sponsor:
 U.S. Department of Energy, Morgantown Energy Technology Center (METC)
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.
DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.
ABSTRACT

The project objective is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO₂). This project emphasizes CO₂-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO₂ transportation, CO₂ use, and options for the long-term sequestration of unused CO₂. Commercially available CO₂-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO₂ budget, or an "equivalent CO₂" budget associated with each of the individual energy-cycle steps in addition to process design capital and operating costs. The value used for the "equivalent CO₂" budget is 1 kg CO₂/kWhe. The base case is a 458-MW (Gross) IGCC system using an O₂-blown Kellogg-Rust-Westinghouse (KRW) agglomerating fluidized bed gasifier, Illinois #6 bituminous coal feed and low-pressure glycol sulfur removal followed by a Claus/SCOT treatment to produce a salable product. Mining, feed preparation and conversion result in a net electric power production for the entire energy cycle of 411-MW with a 0.801 kg/kWhe CO₂ release rate. For comparison, the gasifier output was taken through water-gas shift and then to either low-pressure glycol or chilled methanol for H₂S recovery; low-pressure glycol or membranes for CO₂ recovery; and finally either a combustion turbine or fuel cell as the topping cycle. CO₂ recovery was set at 80% for all cases so that the membrane system could be compared with the glycol on a consistent basis. The combustion turbine was then fed a high hydrogen content fuel. From the IGCC plant, a 500-km pipeline took the CO₂ to geological sequestering. For the optimal case, the net electric power projection was reduced by 73-MW with a 0.277-kg/kWhe CO₂ release rate (when make-up power was considered).