Microporous Silica Prepared by Organic Templating: Relationship Between the Molecular Template and Pore Structure

PDF Version Also Available for Download.

Description

Microporous silica materials with a controlled pore size and a narrow pore size distribution have been prepared by sol-gel processing using an organic-templating approach. Microporous networks were formed by pyrolytic removal of organic ligands (methacryloxypropyl groups) from organic/inorganic hybrid materials synthesized by copolymerization of 3-methacryloxypropylsilane (MPS) and tetraethoxysilane (TEOS). Molecular simulations and experimental measurements were conducted to examine the relationship between the microstructural characteristics of the porous silica (e.g., pore size, total pore volume, and pore connectivity) and the size and amount of organic template ligands added. Adsorption measurements suggest that the final porosity of the microporous silica is due ... continued below

Physical Description

7 p.

Creation Information

BRINKER,C. JEFFREY; CAO,GUOZHONG; KALE,RAHUL P.; LOPEZ,GABRIEL P.; LU,YUNFENG & PRABAKAR,S. September 3, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 12 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM, and Livermore, CA (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Microporous silica materials with a controlled pore size and a narrow pore size distribution have been prepared by sol-gel processing using an organic-templating approach. Microporous networks were formed by pyrolytic removal of organic ligands (methacryloxypropyl groups) from organic/inorganic hybrid materials synthesized by copolymerization of 3-methacryloxypropylsilane (MPS) and tetraethoxysilane (TEOS). Molecular simulations and experimental measurements were conducted to examine the relationship between the microstructural characteristics of the porous silica (e.g., pore size, total pore volume, and pore connectivity) and the size and amount of organic template ligands added. Adsorption measurements suggest that the final porosity of the microporous silica is due to both primary pores (those present in the hybrid materials prior to pyrolysis) and secondary pores (those created by pyrolytic removal of organic templates). Primary pores were inaccessible to N{sub 2} at 77 K but accessible to CO{sub 2} at 195 K; secondary pores were accessible to both N{sub 2} (at 77 K) and CO{sub 2} (at 195 K) in adsorption measurements. Primary porosity decreases with the amount of organic ligands added because of the enhanced densification of MPS/TEOS hybrid materials as the mole fraction of trifunctional MPS moieties increases. pore volumes measured by nitrogen adsorption experiments at 77 K suggest that the secondary (template-derived) porosity exhibits a percolation behavior as the template concentration is increased. Gas permeation experiments indicate that the secondary pores are approximately 5 {angstrom} in diameter, consistent with predictions based on molecular simulations.

Physical Description

7 p.

Notes

OSTI as DE00014821

Medium: P; Size: 7 pages

Source

  • Journal Name: Chemistry of Materials; Other Information: Submitted to Chemistry of Materials

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: SAND99-2296J
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 14821
  • Archival Resource Key: ark:/67531/metadc626825

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • September 3, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 3:34 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 12

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

BRINKER,C. JEFFREY; CAO,GUOZHONG; KALE,RAHUL P.; LOPEZ,GABRIEL P.; LU,YUNFENG & PRABAKAR,S. Microporous Silica Prepared by Organic Templating: Relationship Between the Molecular Template and Pore Structure, article, September 3, 1999; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc626825/: accessed September 20, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.