Applying coda envelope measurements to local and regional waveforms for stable estimates of magnitude, source spectra and energy

PDF Version Also Available for Download.

Description

Magnitude estimation forms an integral part in any seismic monitoring endeavor. For monitoring compliance of the Comprehensive Nuclear-Test-Ban Treaty, regional seismic discriminants are often functions of magnitude such as m{sub b}:M{sub 0} high-to-low spectral ratios, and nuclear yield estimation. For small-to-moderate magnitude events that cannot be studied by a large regional or global network of stations, there is a need for stable magnitudes that can be obtained from as few as one station. To date, magnitudes based on coda envelopes are by far the most stable because of the coda's averaging properties. Unlike conventional magnitudes which utilize the direct phases ... continued below

Physical Description

746 Kilobytes pages

Creation Information

Hofstetter, R.; Mayeda, K.; Rodgers, A. & Walter, W. July 26, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 24 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Magnitude estimation forms an integral part in any seismic monitoring endeavor. For monitoring compliance of the Comprehensive Nuclear-Test-Ban Treaty, regional seismic discriminants are often functions of magnitude such as m{sub b}:M{sub 0} high-to-low spectral ratios, and nuclear yield estimation. For small-to-moderate magnitude events that cannot be studied by a large regional or global network of stations, there is a need for stable magnitudes that can be obtained from as few as one station. To date, magnitudes based on coda envelopes are by far the most stable because of the coda's averaging properties. Unlike conventional magnitudes which utilize the direct phases such as P (P{sub n}, P{sub g}) or S (S{sub n}, L{sub g}), or M{sub g}, a coda envelope magnitude is not as sensitive to the undesirable effects of source radiation pattern, 3-D path heterogeneity, and constructive/destructive interference near the recording site. The stability of the coda comes from a time-domain measurement made over a large portion of the seismogram thereby averaging over the scattered wavefield. This approach has been applied to earthquakes in the western United States where it was found that a single-station coda magnitude was approximately equivalent to an average over a 64 station network which used only the direct waves such as L{sub g} (Mayeda and Walter, JGR, 1996). In this paper we describe in detail our calibration procedure starting with a broadband recording, correlation with independent moment estimates, formation of narrowband envelopes, coda envelope fitting with synthetics, and finally the resultant moment-rate spectra. Our procedure accounts for all propagation, site, and S-to-coda transfer function effects. The resultant coda-derived moment-rate spectra are then used to estimate seismic moment (M{sub o}), narrowband magnitudes such as m{sub b} or M{sub L}, and total seismic energy. For the eastern Mediterranean region a preliminary study was completed for earthquakes in the Gulf of Aqaba region using two regional broadband stations, KEG and BGIO. As was found in the western U.S., a significant reduction in magnitude scatter was achieved when using the coda. This procedure provides a means of unbiased, unsaturated magnitude estimation that will be tied to a physical measure of earthquake size (seismic moment), unlike conventional magnitudes such as m{sub b}, M{sub L}, M{sub D}, and M{sub S}. We outline a calibration procedure that can be used in software codes such as SAC on both UNIX and PC platforms. This paper describes the calibration technique and the application to regional stations of the IMS.

Physical Description

746 Kilobytes pages

Source

  • 21st Seismic Research Symposium: Technologies for Monitoring the Comprehensive Nuclear Test Ban Treaty, Las Vegas, NV (US), 09/21/1999--09/24/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-134307
  • Report No.: GC0402000
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 13886
  • Archival Resource Key: ark:/67531/metadc626766

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 26, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 2:14 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 3
Total Uses: 24

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Hofstetter, R.; Mayeda, K.; Rodgers, A. & Walter, W. Applying coda envelope measurements to local and regional waveforms for stable estimates of magnitude, source spectra and energy, article, July 26, 1999; California. (digital.library.unt.edu/ark:/67531/metadc626766/: accessed December 14, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.