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Abstract 
A popular three-dimensional mesh generation scheme is to start with a quadrilateral mesh 
of the surface of a volume, and then attempt to fill the interior of volume with hexahedra, 
so that the hexahedra touch the surface in exactly the given quadrilaterals[3]. Folklore has 
maintained that there are many quadrilateral meshes for which no such compatible 
hexahedral mesh exists. In this paper we give an existence proof which contradicts this 
folklore: A quadrilateral mesh need only satisfy some very weak conditions for there to 
exist a compatible hexahedral mesh. For a volume that is topologically a ball, any 
quadrilateral mesh composed of an even number of quadrilaterals admits a compatible 
hexahedral mesh. We extend this to volumes of higher genus: There is a construction to 
reduce to the ball case if and only if certain cycles of edges are even. 

Keywords: Computational Geometry, hexahedral mesh generation, existence. 

1 Introduction 
For some applications, a mesh composed of quadrilateral faces and hexahedral (Le. cube- 
like) elements possess better numerical properties than a mesh composed of triangular 
faces and tetrahedral elements. Hence a sizable fraction of the mesh generation research 
conducted in recent years has been devoted to hexahedral meshes[l9]. In some large-scale 
applications, the surface of an object is meshed before its interior. This is a requirement for 
meshing several adjoining objects independently. This requirement may also arise in 
parallel mesh generation, where the domain is first divided into many small regions, one 
for each processor. The problem is to produce a hexahedral mesh that fills the volume and 
touches the surface in exactly the given surface mesh. We say that such hexahedral and 
quadrilateral meshes are compatible, that the hexahedral mesh respects the quadrilateral 
mesh, and the quadrilateral mesh admits the hexahedral mesh. 

For many years, meshing algorithm developers have tried to solve this problem, without 
even knowing if it could be done. The difficulty of this problem has lead many to conclude 
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that the surface mesh must be highly constrained in order for it to admit a compatible 
hexahedral mesh. Our result is that this is not the case. We show that for an input that is 
topologically a ball, all that is required is that the quadrilateral mesh has an even number 
of quadrilaterals! This condition is also necessary. We extend this result to a 
characterization of the surface meshes of a sphere with n-handles that admit compatible 
hexahedral meshes. 

Bern[ 11 has previously given an algorithm that generates a compatible tetrahedral mesh of 
a polyhedron given any triangular mesh of its surface, settling the existence question for 
trianguladtetrahedral meshes. Schneiders has posed as an open problem the 
characterization of which quadrilateral surface meshes admit a compatible hexahedral 
mesh[l7]. We do not give an algorithm, but we do settle the existence question. Our 
techniques are novel and entirely different from Bern’s[l]. Our approach relies on the 
spatial twist continuum, or STC[2], a global interpretation of the connectivity of the dual 
of a mesh, and some theorems of topology concerning regular curves and manifolds[4]. 

Our result is entirely topological and combinatorial. We define the quadrilateral mesh, and 
the hexahedral mesh, purely in terms of their topology. We ignore the geometric 
embedding of the mesh. In particular, we have no guarantees on the shape of the elements 
of the mesh, except that certain combinatorial pathologies that a priori require bad elements 
are ruled out. For the most part, our techniques are elementary. The outline of the proof is 
as follows: First, we map the object to a ball, mapping the given surface mesh to a mesh of 
the sphere. Second, we form the two-dimensional STC of the surface mesh. This is an 
arrangement of regular curves on the sphere, whose induced cell complex is the 
combinatorial dual[8] of the quadrilateral mesh. Third, we use theorems of topology[4] to 
show that the curve arrangement can be extended into an arrangement of regular manifolds 
through the ball. Fourth, we add additional manifolds, entirely interior to the ball, so that 
the cell complex induced by the arrangement satisfies certain combinatorial constraints. 
Fifth, the induced cell complex of the manifold arrangement is dualized to create a 
hexahedral mesh, and mapped from the ball back to the original object. The combinatorial 
constraints on the manifold arrangement ensure that the hexahedral mesh is well defined. 
With the exception of showing the existence of the initial manifolds, the third part, the 
proof is constructive. 

Most known hexahedral mesh generation codes don’t address the problem of respecting a 
given quadrilateral surface mesh. Of those that do, all either change the surface mesh in 
some way, or add non-hexahedral elements. For example, Plastering[l6], the current 
version of Whisker Weaving[3], and Algor’s Hexagen coupled with Houdini[lS], all allow 
the user to chose between changing the surface mesh, and having all hexahedral elements. 
This paper shows that these caveats are not usually necessary, so I hope developers will be 
inspired to remove them from their codes. In particular, Whisker Weaving[3] is a heuristic 
algorithm that attempts to create a valid STC, which is then dualized to a hexahedral mesh: 
The fix-up rules given in Section 6 should remove one of the few remaining difficulties for 
this algorithm. 
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Mesh definitions and assumptions 

The remainder of this paper is organized as follows. In Section 2 we describe our 
assumptions and requirements about quadrilateral and hexahedral meshes. In Section 3 we 
define the STC. In Section 4 we present the necessary conditions, and in Section 5 show 
that the two-dimensional STC of the surface mesh satisfying these conditions can be 
extended to a three-dimensional STC. In Section 6 we show how to add to the arrangement 
so that the induced cell complex dualizes to a valid hexahedral mesh. In Section 7 we 
extend our results to non-ball input. In Section 8 we present conclusions. 

2. Mesh definitions and assumptions 

Quadrilateral mesh definition 

We suppose we are given a polyhedron P and a quadrilateral mesh of its surface. A 
quadrilateral mesh of the polyhedron will be a geometric face lattice[l8] (or cell complex), 
composed of 0-dimensional nodes, 1-dimensional edges, and 2-dimensional faces. We 
require the following: 

a. Each edge contains two distinct nodes. 

b. Each facet is contained in at least one higher-dimensional facet. 1.e. each node is in 
an edge, each edge is in a face. 

c. Every edge is in exactly two distinct faces. 

d. Each face is bounded by a cycle of four distinct edges. 

e. Two nodes have at most one edge between them. 

f. Two faces share at most one edge[5]. 

Mitchell et al. has recently given an algorithm called Pillowing Doublets, by which a 
quadrilateral mesh satisfying a through e can be locally refined to satisfy f as well[5]. 

Hexahedral mesh definition 
We define a hexahedral mesh as follows. This definition of a hexahedral mesh may be too 
weak for certain numerical applications. Only the combinatorial aspects of the mesh are 
considered. For example, it may not be possible to embed the mesh in Euclidean space with 
straight edges. However, certain undesirable combinatorial structures are forbidden. 

A hexahedral mesh is a three-dimensional geometric face lattice, or cell complex. The 0- 
dimensional entities are called nodes. The 1-dimensional entities are called edges. The 2- 
dimensional entities are calledfaces, and the 3-dimensional entities are called hexahedra 
or hexes. We require the following: 

A. Each edge contains two distinct nodes. 
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B. Each facet is contained in at least one higher-dimensional facet. Le. each node is in 

C. Every face is contained in exactly two distinct hexes, except that those of the 
surface mesh are contained in exactly one hex. The edges of the face have the 
opposite ordering in the two hexes (i.e. the hexes are on “opposite sides” of the face). 

an edge, each edge is in a face, and each face is in a hexahedron. 

D. Each face is bounded by a cycle of four distinct edges. 

E. A hex is bounded by six distinct faces. Furthermore, these faces pairwise share 
edges in the following way. Face 0’s ordered edge cycle is { abcd} , face 1 
{aiel} , face 2 { bjfi} , face 3 { efgh} , face 4 { cjgk} , face 5 { dlhk} . Distinct 

letters represent distinct edges. 

F. Two nodes have at most one edge between them. 

These conditions may rule out additional pathologies that may not be immediately obvious. 
For example, they imply that the entire polyhedron is meshed, that there is not any “internal 
voids” left unmeshed. 

By the technique of Pillowing Doublets[5], a mesh satisfying the above constraints can also 
be made to satisfy constraint G below. The surface mesh does not change as long as it 
satisfies condition f. 

G. Any two faces share at most one edge. This also implies that any two hexes share 
at most one face. 

We will use constructive techniques similar to Pillowing Doublets[5] in our existence proof 
below to force a cell complex to satisfy A through F. 

3. STC definition 
The spatial twist continuum (STC)[2] is a special structure superimposed on the 
combinatorial dual[8] of a quadrilateral or hexahedral mesh. Any quadrilateral and any 
hexahedral mesh induces an STC. By duality, it is also possible to derive a mesh from a 
given STC. The STC definition may be extended to meshes composed of d -cubes in any 
dimension d ,  but similar structures have not been found for meshes of other types of 
elements. 

Two-dimensional STC 

The two-dimensional STC is a non-degenerate arrangement of regular curves called 
chords. By non-degenerate, we mean that the chords are nowhere tangent, and that at most 
two chords meet at a point. For historical reasons[2], chords that are closed curves are 
called loops and the points of intersection are called centroids. The STC of a given 
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STC definition 

quadrilateral mesh is any one of the of arrangements whose induced cell complex is the 
combinatorial dual of the mesh[8]. By combinatorial dual, we mean that only the 
combinatorial/topological structure is considered, the geometric embedding is ignored. 

It appears to have been known for some time[9] that an arrangement of regular curves 
dualizes to a quadrilateral mesh, but the author is unaware of when this observation was 
first made, or if any similar observations about arrangements in three dimensions had been 
made prior to Murdoch et. al[2]. 

For simplicity, we first take the given input solid and map it to the ball, mapping the given 
quadrilateral mesh to a quadrilateral mesh ofthe sphere. We then form the two-dimensional 
STC of the quadrilateral mesh of the sphere. See Murdoch et. al[2] for a full description of 
the construction, but we outline it here for clarity: We fust form the dual of the quadrilateral 
mesh; see Figure 1. We form chains of dual edges: the two edges that are dual to the two 
edges forming opposite sides of a quadrilateral are considered to lie in the same chain. 
Since the sphere is closed every quadrilateral edge is in exactly two faces, and each chain 
is actually a (self-intersecting) cycle of dual edges. For each chain we form a regular curve 
(loop) through its centroids. 

Figure 1. Left, the dual of a portion of a quadrilateral mesh. Center, a loop of the STC 
drawn with a wide line width. Left shows a three-dimensional view of the loops of a quad- 
rilateral surface mesh. 

Three-dimensional STC 
The three-dimensional STC is a non-degenerate arrangement of regular manifolds called 
sheets[2]. By non-degenerate, we mean that the sheets are nowhere tangent, and that at 
most three sheets meet at a point. Figure 2 shows the STC for a mesh composed of a four 
hexahedra. For historical reasons[2], the curves of intersection are called chords and the 
points of intersection are called centroids. The STC of a hexahedral mesh is any one of the 
of arrangements whose induced cell complex is the combinatorial dual of the mesh. The 
intersection of the arrangement with the surface of the object is a two-dimensional STC. 
(The loops are closed curves but may be non-regular if e.g. the object surface is planar 
facetted. This is unimportant.) The two-dimensional STC’s induced cell complex is the 
dual of the quadrilateral mesh of the surface. For brevity, we will call any non-degenerate 
arrangement of sheets an STC, regardless of whether its cell complex dualizes to a valid 
hexahedral mesh. The main thrust of this paper is to show the existence of an STC whose 
induced cell complex & the dual of some hexahedral mesh that meets the sphere in exactly 
the given quadrilateral mesh. 
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Figure 2. 

1 

rd 

The spatial twist continuum (STC) for a mesh of four hexahedra. 

4. Necessary condition 

For any hexahedral mesh of any type of input, the surface faces are in only one hex and 
internal faces are in two hexes, so that there are an even number of faces on the boundary 
of the mesh. Consequently, for there to exist a hexahedral mesh that respects a given 
quadrilateral mesh, the quadrilateral mesh must have an even number of faces. For 
example, no hex mesh exists for the surface mesh in Figure 3. 

Figure 3. 
For example, this surface mesh has 13 faces. 

A surface mesh with an odd number of faces has no hex mesh respecting it. 

The surprising result of this work is that this necessary condition is actually sufficient! The 
remaining sections of this paper are devoted to showing this. 

Theorem I Any hexahedral mesh has an even number of quadrilateral faces on its 
boundary. 

Proof. Let h be the number of hexes in the mesh, f the number of faces, and b the number 
of faces on the boundary of the mesh. Then b faces are in one hex, all other faces are 
contained in two hexes. Each hex contains six faces. Hence 6h = 2f - b , so b is even. I 
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Constructing an initial STC 

5. Constructing an initial STC 
Given a surface mesh with an even number of quadrilaterals, we show that there exists an 
arrangement of regular manifolds that meets the sphere in exactly the two-dimensional 
STC of the given surface mesh. The even-ness condition is first translated into a condition 
on the parity of the number of loop self-intersections. An immediate consequence of an 
observation of Gauss[ 101, summarized in Rosenstiehl[9], is the following lemma. 

Lemma 1 In the arrangement of loops of a two-dimensional STC of a quadrilateral mesh 
of the sphere, the parity of the number of loop self-intersections is equal to the parity of the 
number of suq5ace faces. 

Proof. Each quadrilateral of loop A is the intersection of loop A with some other loop, or 
A with itself. In Gauss[ 101 and Rosenstiehl[9], and by the Jordan curve theorem, we noted 
that two nowhere-tangent closed curves on the sphere (plane) intersect an even number of 
times. Hence the number of intersections of A with all other loops is even. So the parity of 
the number of quadrilaterals of A is the parity of the number of self-intersections of A .  

For the entire surface mesh, there are an even number of intersections between loops A and 
B for all loops A # B . Hence the parity of the surface mesh is the parity of the sum over all 
loops of the number of self-intersections. I 

A combinatorial description of arrangements of curves called Gauss codes has been studied 
for some time. It appears that the focus has been on algorithms to recognize which Gauss 
codes can be realized as arrangements[13], or classifying non-isomorphic 
arrangements[l2], rather than on transforming one such arrangement to another as in the 
present work or in local mesh refinementrl 11. A topological theorem of Smale[4] that is 
central to our work is the following: 

Theorem 2 [Sinale] Let xo be a point in the unit tangent bundle T of a Riemannian 
manifold M .  Then there is a I-I  correspondence between the set .no of classes (under 
regular homotopy) of regular curves on M which start and end at the point and direction 
determined by xo and n, (T,  xo) . 

What this theorem says for M equal to the sphere, is that there is a regular homotopy (i.e. 
smooth transformation) between any loop with an even number of self-intersections and a 
regular curve with no self-intersections. Similarly, there is a regular homotopy between any 
loop with an odd number of self-intersections and a regular curve with one self- 
intersection: Hence there is a regular homotopy between any two loops with an odd number 
of self intersections. The importance of the necessary parity condition, Theorem 1, is that, 
if there are an even number of surface quadrilaterals then the loops homotopic to a curve 
with one self-intersection can be taken in pairs. 
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We use the existence of these regular homotopys to show that there exist regular manifolds 
that respect the surface loops. By respect, we mean that every loop is contained in the 
boundary of one manifold, and the boundary of a manifold is exactly some number of 
surface loops. 

Theorem 3 The two-dimensional STC of an even mesh of the sphere admits a compatible 
arrangement of regular manifolds through the ball. 

Proof. We construct a manifold homeomorphic to a disk for each even loop Las follows. 
By Theorem 2 there exists a regular homotopy h on the sphere, where h (0) = L and 
h ( 1) is a circle. We then chose, for example, the manifold (1 - t/2,h ( t )  ) , where (r,s) 
denotes the curve s at radius r from the center of the ball. We can extend this to close the 
circle with a disk inside the ball. 

We construct a manifold for each Dair of odd loops L,, L, as follows. There is a regular 

homotopy h from L ,  to L, . We can then chose, for example, the manifold 

(: + ( t - ;)2.h ( t )  ) . This manifold has exactly loops L,  and L, as its boundary. 

If necessary, the manifolds are perturbed so that they are regular, nowhere tangent (and 
nowhere self-tangent), and at most three intersect at any point. Note that only one manifold 
contains each point of a loop, except that two contain each loop centroid (or one manifold 
contains the loop centroid twice in the case of a self-intersection). I 

The dual of the cell complex induced by this arrangement (together with the sphere) is a 
cell complex that respects the surface mesh, but conditions A through F are not necessarily 
satisfied. We show below that by adding regular manifolds topologically equivalent to a 
sphere, conditions A through F may be satisfied. These additional sheets do not intersect 
the surface of the sphere, so the arrangement still respects the surface mesh. 

6. Adding to the STC arrangement to satisfy the 
val id i t y constraints 

The dual conditions A+ through F+ for an arrangement's cell complex corresponding to A 
through F are the following. For simplicity, the sphere itself is considered to be part of the 
arrangement. We use the term internal to denote cells that are not on the sphere. 

A+. Each internal 2-cell is contained in exactly two distinct 3-cells. 

B+. Each facet contains at least one lower-dimensional facet (excepting centroids). 

C+. Each STC edge has two distinct centroids. Every surface centroid has one internal 
STC edge, which connects it to an internal centroid. 
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Adding to the STC arrangement to satisfy 

D+. Each internal STC edge is contained in exactly four distinct 2-cells. 

E+. Each internal STC centroid is contained in six STC edges. The edges are in twelve 
common 2-cells as follows. Edge 0 is in 2-cells {abcd)  , edge 1 {a i e l )  , edge 2 
{ bjfi) , edge 3 {efgh)  , edge 4 { cjgk) , edge 5 {dlhk)  . Distinct letters 

represent distinct 2-cells. 

F+. Two 3-cells have at most one 2-cell in common. 

Theorem 4 For any non-degenerate arrangement of regular manifolds in a ball, whose 
boundary is a given two-dimensional STC on a sphere, there exists additional sheets 
interior to the ball, such that the combined arrangement satisfies conditions A+ through 
Fl-. 

Proof. Many of these conditions are satisfied by the initial arrangement without 
modification. Most of the time when a condition fails to hold it is because of the 
requirement that facets are distinct. This arises because the arrangement is locally too 
coarse. Adding additional sheets alleviates this problem.These additional sheets are 
topologically equivalent to the sphere and do not intersect the surface mesh. Each added 
sheet surrounds some arrangement facet, at approximately distance E from the facet. Each 
added sheet has its E smaller than all previous E ‘s. The order in which the conditions are 
considered is important: When adding sheets to satisfy a condition, it is assumed that all 
previous conditions are already satisfied, and care is taken so that the previous conditions 
are still satisfied after the current modification. 

Proof A+ Each internal 2-cell is contained in exactly two distinct 3-cells. A 2-cell is a 
subset of a sheet. The sheets constructed so far are orientable with boundary on the sphere. 
In the same way that the bounding curves divide the surface of the sphere into (at least) an 
inside and an outside, one cannot travel inside the ball from one “side” of the manifold to 
the other without crossing the manifold. Hence every point in a 2-cell of the manifold is in 
two distinct 3-cells. 

Proof B+ Each facet contains at least one facet. An edge is a subset of a chord, a curve 
of intersection between two sheets or a sheet and itself. A chord either starts and ends at 
two surface centroids, or is a closed curve. Furthermore, a chord may be homotopic to the 
circle and contain no centroids; see the construction below. In all other cases, the’edge 
contains a centroid. Every 2-cell contains an edge, since every sheet introduced so far has 
a boundary. Every 3-cell contains a 2-cell, since the ball is bounded. 

Construction: If a closed chord of intersection C between sheets A and B exists without 
centroids, then we add two topological ball sheets 2, and Z2 as in Figure 4, each one 

containing slightly more than half of C . The sheets may be made small enough that they 
do not intersect the arrangement otherwise. Chord C now has 4 centroids. Each of the two 
circles of intersection D between 2, and Zz are intersected orthogonally by A and 23, as 
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in Figure 4 right. These circular chords also have 4 centroids. A+ is still satisfied because 
2, and Z2 are closed and orientable. 

Figure 4. Fixing a chord Cwith no centroids: Right shows a cross section in the 
“plane” of C . Left shows a cross section in the “plane” of one of the curves of intersection 
between 2, and Z2. 

Proof C+ Each STC edge has two distinct centroids. An edge may contain the same non- 
surface centroid twice in the case that a sheet self-intersects at the centroid. Otherwise the 
centroids are distinct. 

Construction: If an edge contains the same centroid twice, then we introduce a small ball 
sheet Zaround that centroid. The intersection of 2 with the arrangement is topologically 
equivalent to the intersection of the sphere with the three planes through the coordinate axis 
as in Figure 5 left. 

Proof C+ Every surface centroid has one internal STC edge, which connects it to an 
internal centroid. Every loop centroid is in exactly one internal edge, but this edge may 
contain two (distinct) loop centroids. 

Construction: If any edge contains two loop centroids, then we introduce a spherical sheet 
2 with radius 1 - E for some small E. Thus, every 3-cell containing a loop is a prism whose 
base is a surface 2-cell A ,  and whose top is an interior 2-cell B . Every internal edge 
containing a centroid of A also contains a centroid of B . The previous conditions hold near 
2 because the surface mesh satisfies a through f. 

Proof D+ Each internal STC edge is contained in exactly four distinct 2-cells. An edge 
is the non-tangent intersection of two sheets, or the same sheet with itself. In a small 
neighborhood around the edge, there are four distinct portions of 2-cells containing the 
edge. In the one sheet case, it may be that two non-opposite 2-cells are not distinct as in 
Figure 5. 

Construction: If an edge E is contained in the same 2-cell A twice, then we surround the 
edge by a small ball sheet 2 as in Figure 5.2 may be made small enough so that it doesn’t 
otherwise intersect the arrangement. By C+, the two centroids of the edge are distinct, so 
each of the 2-cells containing E are distinct. Also, the 2-cell A that originally contained E 
twice, now instead contains two distinct edges that are the intersection of 2 and the sheet 
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Adding to the STC arrangement to satisfy 

containing A .  None of the other edges of 2 can be contained in a 2-cell twice: They are 
locally topologically equivalent to the edges of intersection between a unit ball and the 

three coordinate planes of CSZ . The two 2-cells in 2 containing each edge are distinct 
because they are separated by a “coordinate plane”. Similarly the two other 2-cells 
containing an edge of 2 are separated by 2. 

3 

Figure 5. An edge E may appear in a 2-cell A twice. Left shows a cross section per- 
pendicular to E .  Center shows a cross section through E in the “plane” of A .  Left, view in 
an octant near a centroid. 

Proof E+ Each STC centroid is contained in six STC edges ... E+ holds provided both 
D+ and C+ do. A centroid is the pairwise non-tangent intersection of three sheets. Hence 
every centroid has six edges. Provided C+ holds, these edges are distinct. The 2-cells obey 
the required labelling, and are distinct if D+ holds. 

Proof F+ Two 3-cells have at most one 2-cell in common. This need not hold initially. 

Construction: If two 3-cells contain 2-cells A and B in common, then we introduce a 
topological ball sheet 2 containing A as in Figure 6.  By the previous fix-up steps, each 
edge of A is contained in A only once. The sheet 2 is made small enough that it intersects 
the arrangement only in a small neighborhood of each edge of A .  Now, A is contained in 

Figure 6. 
of A .  Right, view in the plane perpendicular to an edge of A .  

Removing a 2-cell A from containment in a 3-cell. Left, view in the “planeyy 

the two 3-cells between A and 2. In each of the original 3-cells A has been replaced by a 
2-cell on 2. All the previous conditions still hold. 

This concludes the proof of theorem 4. I 
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Dualizing the cell complex of the constructed arrangement and the conditions A+ through 
F+ we have the following. 

Theorem 5 Any even quadrilateral mesh (satisfying a through f) of a sugace topologically 
equivalent to a sphere admits a compatible hexahedral mesh (satisfying A through G) of 
the enclosed volume. 

7. Extensions to non-ball input 
We now present necessary and sufficient conditions in order to extend our results to 
quadrilateralizations of a surface that is topologically equivalent to a sphere with n-handles. 
The basic idea is to reduce to the spherical case. 

Lemma 2 A quadrilateral mesh of any sugace is bounded by an even number of edges. 

Proof. Let f be the number of faces, e be the number of edges, and b the number of 
boundary edges of the mesh. Then 4f = 2e - b , so b is even. I 

Consider the cycles of edges in a quadrilateral mesh of a sphere with n-handles. 

Lemma 3 All simple cycles of edges in the same homotopy class have the same parity. 

Proof. A cycle homotopic to 0 is the boundary of a pseudo-manifold (facetted surface) that 
is quadrilateralized. By Lemma 2 the cycle is even. Otherwise, take a reference cycle R , 
and take any other cycle K in the same homotopy class. By definition these bound a 
(collection of) quadrilateralized pseudo-manifolds. The sum of the number of edges of this 
boundary, the number of edges that they don’t have in common, is even. Hence the sum of 
the total number of edges they have is even. I 

Theorem 6 A hexahedral mesh respecting the s u ~ a c e  mesh exists if and only if the sugace 
mesh has an even number of quadrilaterals and every homotopy class of simple cycles of 
edges that can be contracted to 0 inside the volume has even parity. 

Proof. In the previous proof we saw that cycles homotopic to 0 on the surface have even 
parity. Hence in the sphere with no handles case this degenerates to Theorem 5. Otherwise, 
for each handle in turn, we take some cycle R in its homotopy class. Since R has even 
parity, we can extend the quadrilateralization of the surface to include a disk-like pseudo- 
manifold Minside the volume P whose boundary is R . If we conceptually separate M and 
R into two, one for each side of M, i.e. “slicing” along R , we can recursively treat P as a 
manifold with n-1 handles, until the spherical case is reached. Thus the condition is 
sufficient. 

This condition is necessary as well. In any hexahedral mesh respecting the surface mesh, it 
can be shown that the simple edge cycles of interest bound a pseudo-manifold, which is a 
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Conclusions 

quadrilateral sub-complex of the hexahedral mesh[6][7]. A quadrilateral mesh is always 
bounded by an even number of edges, hence the simple cycles of interest must be even. I 

The following figure illustrates the difference between the simple cycles of edges that can 
be contracted to 0 in the volume and those that cannot. 

: r  
:: 

Figure 7. Two quadrilateral meshes of the surface of a torus. The axis of symmetry is 
vertical. Left, cycles in the non-trivial homotopy class have even parity and a hexahedral 
mesh of three elements is obvious. Right, cycles in the non-trivial homotopy class have 
odd parity, and no hexahedral mesh exists. Note that both surface meshes otherwise have 
the same combinatorial structure: the only difference is what is considered the inside and 
outside of the torus. The left figure has a homotopy class of simple cycles of odd length, 
but these surround the axis and are not contractible to 0 inside the volume, hence they do 
not enter into Theorem 6. Similarly, the right figure has a homotopy class of simple cycles 
of even length similar to the left figure, but these surround the axis and are not contractible 
to 0 inside the volume. 

8. Conclusions 
We have shown that given mild conditions on a surface mesh, there exists a hexahedral 
mesh filling the interior of the volume. The fact that the sufficient conditions are minor runs 
counter to the experience of most mesh generation algorithm developers. This is probably 
due to the fact that previous algorithms had no way to quantify the global connectivity 
constraints inherent in hexahedral meshes, while today we know that the STC captures 
these constraints beautifully and succinctly. Some steps of the proof are constructive, and 
may lead to practical algorithms. 

CUBIT is a suite of mesh generation tools under development by Sandia National 
Laboratories and others under contract. Currently, Gasilov et al.[6] is developing a practical 
algorithm for CUBIT, along the lines of the proof of Theorem 6, to reduce the problem of 
constructing a compatible hexahedral mesh for a topological sphere with n-handles to the 
problem of constructing a compatible hexahedral mesh for a topological sphere. The sphere 
will then be meshed using the Whisker Weaving algorithm[3], or perhaps one of the other 
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techniques available in CUBIT, such mapping identifiable subregions[ 141. Whisker 
Weaving is based on the STC, and meshes a topological sphere by creating the arrangement 
of pseudo-manifolds in an advancing-front manner (in contrast to Section 5). 
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