IMPROVED OIL RECOVERY IN FLUVIAL DOMINATED DELTAIC RESERVOIRS OF KANSAS - NEAR-TERM

Quarterly Technical Progress Report
June 1, 1998-September 30, 1998

By
Don W. Green
G. Paul Willhite
A. Walton
D. McCune
R. Reynolds
M. Michnick
L. Watney

Report Issue Date: October 15, 1998

Performed Under Contract No. DE-FC22-93BC14957

University of Kansas
Lawrence, Kansas
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government.

This report has been reproduced directly from the best available copy.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

By
Don W. Green
G. Paul Willhite
A. Walton
D. McCune
R. Reynolds
M. Michnick
L. Watney

November 1999

Work Performed Under Contract No. DE-FC22-93BC14957

Prepared for
U.S. Department of Energy
Assistant Secretary for Fossil Energy

Dan Ferguson, Project Manager
National Petroleum Technology Office
P.O. Box 3628
Tulsa, OK 74101

Prepared by
University of Kansas
Center for Research Inc.
2291 Irving Hill Drive
Campus West
Lawrence, KS 66045
IMPROVED OIL RECOVERY
IN FLUVIAL DOMINATED DELTAIC RESERVOIRS OF KANSAS - NEAR-TERM

Cooperative Agreement Number DE-FC22-93BC14957-25

The University of Kansas Center for Research, Inc.

October 15, 1998

Budget Period #1 Duration from 06/18/93 - 03/31/95
Budget Period #2 Duration from 04/01/95 - 12/31/98

DOE Award $2,007,446

Program Manager
Don W. Green
University of Kansas
Lawrence, Kansas

Principal Investigators
Don W. Green
G. Paul Willhite

Co-Investigators
A. Walton, D. McCune, R. Reynolds, M. Michnick, L. Watney

DOE Project Officer
Rhonda P. Lindsey
Bartlesville Project Office

Reporting Period 06/01/98 - 09/30/98
(21st Quarterly Report)

"U.S./DOE PATENT CLEARANCE IS NOT REQUIRED PRIOR TO PUBLICATION OF THIS DOCUMENT"
Objectives

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc.

General topics to be addressed are 1) reservoir management and performance evaluation, 2) waterflood optimization, and 3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types.

In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included 1) reservoir characterization and the development of a reservoir database, 2) volumetric analysis to evaluate production performance, 3) reservoir modeling, 4) laboratory work, 5) identification of operational problems, 6) identification of unrecovered mobile oil and estimation of recovery factors, and 7) identification of the most efficient and economical recovery process.

To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were 1) geological and engineering analysis, 2) laboratory testing, and 3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were 1) design and construction of a waterflood plant, 2) design and construction of a water injection system, 3) design and construction of tank battery consolidation and gathering system, 4) initiation of waterflood operations and reservoir management, and 5) technology transfer. Tasks 1-3 have been completed and water injection began in October 1995.

In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included 1) reservoir characterization and the development of a reservoir database, 2) identification of operational problems, 3) identification of near wellbore problems such as plugging caused from poor water quality, 4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells).

To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included 1) geological and engineering analysis, 2) waterplant optimization, 3) wellbore cleanup and pattern changes, and 4) field operations. This work was completed and the project has moved into Budget Period 2.

The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period is subdivided into six major tasks. The tasks were 1) waterplant development, 2) profile modification treatments, 3) pattern changes, new wells and wellbore cleanups, 4) reservoir development (polymer flooding), 5) field operations, and 6) technology transfer.
Summary of Technical Progress

Stewart Field Project

Task II.1 - Design/Construct Waterflood Plant

Summary of work in last quarter

None.

Summary of planned work for next quarter

Will test additional water supply zones/sources in Sherman #5.

Task II.2 - Design/Construct Injection System

Summary of work in last quarter

None.

Summary of planned work for next quarter

Evaluate additional injection wells such as Sherman 3-9 and Carr 2-2. These water supply wells may be converted contingent upon success of finding other water supply sources.

Task II.3 - Design/Construct Battery Consolidation and Gathering System

Summary of work in last quarter

None.

Summary of planned work for next quarter

None planned.

Task II.4 - Waterflood Operations and Reservoir Management

Summary of work in last quarter

Ongoing pump changes and speeding up pumping units were performed during the quarter on several wells. These changes are made as a result of the well testing program that identifies wells with production problems, rising fluid levels, abnormal production trends and low pump efficiencies. The changes that were made are a continued effort to maximize oil production and keep all the wells near a pumped off condition. Also two new progressive gravity pumps were installed on producing wells Scott 4-4 and Sherman #4 to increase fluid production.

The development and infill drilling program was completed during this quarter, with mixed results. Two “low risk” infill wells were drilled on the Pauls and Meyer tracts. The Pauls 9-6 located 984’ FNL
and 180' FEL in Sec. 9-23S-31W encountered only 2-3 feet of pay and was plugged. The results of drilling this well will result in the modification of the net pay maps. The Meyer 10-6 located 965' FNL and 1435' FEL in Sec. 10-23S-31W encountered 35 ft of pay and is waiting for pumping equipment to be installed. The Sherman 3-10 located 1620' FSL and 510' FEL in Sec. 3-23S-31W was a more risky location and was drilled to test a different geological interpretation, encountered tight limestone in the Morrow section and was plugged. The Meyer 10-6 may be converted to injection after re-evaluating production and revised geology.

Continued to monitor production and injection rates, water supply volumes, and injection pressures. Continued the ongoing testing of producing wells with test trailers and fluid level instruments. Ongoing allocation of the injection volumes in the injection wells were performed based on response in producers and injectors. Cumulative water injection through September is 6,899,601 bbls. Oil production has continued to increase and as of October 1, 1998 total incremental waterflood response is over 2400 BOPD. Total field production is approximately 2700 BOPD and 3500 BWPD. Total incremental waterflood production through September 1998 is 1,363,146 BO. Figure 1 is a plot showing average daily totals for injection and production data by month for the field since the initiation of the waterflood.

Summary of planned work for next quarter

Continue to monitor for response at producing wells with well tests and fluid levels. Update the reservoir computer model and simulate when applicable. Upgrade pumping equipment as necessary. Several increasing fluid levels will be addressed with larger pumping equipment and evaluation of additional progressive cavity pumps will be conducted.

Evaluation of the Pauls 9-5, Mackey #5, and Bulger 7-2 will be conducted to determine workover potential or returning these wells to production. Plans are to install a 10' X 30' free water knockout to improve oil treating and reduce chemical usage.

Task II.5 - Technology Transfer

Summary of work in last quarter

Continued to publicize information on the success of the Stewart Field waterflood. Operators throughout the region continue to visit the field to view the state-of-the-art waterflood installation and computerized monitoring system.

Summary of planned work for next quarter

Continue to publicize information on the success of the Stewart Field waterflood.
Figure 1. Stewart Field injection and Production Data since Initiation of the Waterflood.
Summary of Technical Progress

Savonburg Field Project

Task II.1 - Water Plant Development

Summary of work in last quarter

Testing of the AFU system continues. Venturis were repositioned. Water quality continued to improve. During the last half of September the plant operated, without deficiency, with 5 micron filters.

Summary of work planned for next quarter

Since the water quality is now excellent, no major adjustments are anticipated. Hopefully, decreased sized filters can be installed.

Task II.2 - Profile Modification Treatments

Summary of work in last quarter

No channelblock treatments or temperature surveys were performed during this quarter.

Summary of work planned for next quarter

Wells will be tested, cleaned and worked as needed.

Task II.3 - Pattern Changes and Wellbore Cleanup

Summary of work in last quarter

The following wells were serviced during the last quarter; O-1, H-10, K-43 K-44, K-45 (3 times) and K-54 (2 times). Acid treatments were applied to HW-1, H-14, H-29 and K-42. The following wells were jetted, washed and acidized; H-5, RW-7, and RW-15 (twice). Five old wells were plugged on the south 160 acres (Lowe) of the project.

Summary of planned work for next quarter

Wells will be tested, cleaned and worked on as needed.

Task II.4 - Reservoir Development (Polymer Flooding)

Summary of work in last quarter

Meeting was held July 31, with operator to discuss prospect of initiating polymer flood.

Summary of work for next quarter

Operator is considering initiating polymer flood.
Task II.5 - Field Operations

Summary of work in last quarter

Normal field operations have included: 1) monitoring wells on a daily basis, 2) repairing waterplant, piping, and wells as required, 3) collecting daily rate and pressure data, and 4) solving any other daily field operational problem that might occur.

<table>
<thead>
<tr>
<th>Month</th>
<th>Oil Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 1993</td>
<td>26.4 B/D</td>
</tr>
<tr>
<td>November 1993</td>
<td>30.7 B/D</td>
</tr>
<tr>
<td>December 1993</td>
<td>32.0 B/D</td>
</tr>
<tr>
<td>January 1994</td>
<td>30.8 B/D</td>
</tr>
<tr>
<td>February 1994</td>
<td>30.9 B/D</td>
</tr>
<tr>
<td>March 1994</td>
<td>30.3 B/D</td>
</tr>
<tr>
<td>April 1994</td>
<td>29.1 B/D</td>
</tr>
<tr>
<td>May 1994</td>
<td>28.5 B/D</td>
</tr>
<tr>
<td>June 1994</td>
<td>30.3 B/D</td>
</tr>
<tr>
<td>July 1994</td>
<td>28.9 B/D</td>
</tr>
<tr>
<td>August 1994</td>
<td>24.6 B/D</td>
</tr>
<tr>
<td>October 1994</td>
<td>23.0 B/D</td>
</tr>
<tr>
<td>November 1994</td>
<td>25.7 B/D</td>
</tr>
<tr>
<td>December 1994</td>
<td>27.8 B/D</td>
</tr>
<tr>
<td>January 1995</td>
<td>27.0 B/D</td>
</tr>
<tr>
<td>February 1995</td>
<td>25.3 B/D</td>
</tr>
<tr>
<td>March 1995</td>
<td>22.4 B/D</td>
</tr>
<tr>
<td>April 1995</td>
<td>22.4 B/D</td>
</tr>
<tr>
<td>May 1995</td>
<td>25.0 B/D</td>
</tr>
<tr>
<td>June 1995</td>
<td>23.9 B/D</td>
</tr>
<tr>
<td>July 1995</td>
<td>26.8 B/D</td>
</tr>
<tr>
<td>August 1995</td>
<td>25.2 B/D</td>
</tr>
<tr>
<td>September 1995</td>
<td>24.8 B/D</td>
</tr>
<tr>
<td>October 1995</td>
<td>24.4 B/D</td>
</tr>
<tr>
<td>November 1995</td>
<td>24.4 B/D</td>
</tr>
<tr>
<td>December 1995</td>
<td>26.3 B/D</td>
</tr>
<tr>
<td>January 1996</td>
<td>28.0 B/D</td>
</tr>
<tr>
<td>February 1996</td>
<td>29.2 B/D</td>
</tr>
<tr>
<td>March 1996</td>
<td>27.2 B/D</td>
</tr>
<tr>
<td>April 1996</td>
<td>26.7 B/D</td>
</tr>
<tr>
<td>May 1996</td>
<td>26.6 B/D</td>
</tr>
<tr>
<td>June 1996</td>
<td>24.9 B/D</td>
</tr>
<tr>
<td>July 1996</td>
<td>25.4 B/D</td>
</tr>
<tr>
<td>August 1996</td>
<td>26.5 B/D</td>
</tr>
<tr>
<td>September 1996</td>
<td>26.1 B/D</td>
</tr>
<tr>
<td>October 1996</td>
<td>27.1 B/D</td>
</tr>
<tr>
<td>November 1996</td>
<td>26.4 B/D</td>
</tr>
<tr>
<td>December 1996</td>
<td>27.8 B/D</td>
</tr>
</tbody>
</table>
Summary of planned work for next quarter

Field operations will be continued.

Task II.6 - Technology Transfer

Summary of work in last quarter

Monthly meetings were conducted with personnel from the James Russell Petroleum, Inc., the Tertiary Oil Recovery Project and the Petroleum Technology Transfer Council attending.

Summary of planned work for next quarter

The field will be visited by other operators from the area.