Evaluation of thermo-hydrological performance in support of the thermal loading systems study

PDF Version Also Available for Download.

Description

Heat generated as a result of emplacing spent nuclear fuel will significantly affect the pre- and post-closure performance of the Mined Geological Disposal System (MGDS) at the potential repository site in Yucca Mountain. Understanding thermo-hydrological behavior under repository thermal loads is essential in (a) planning and conducting the site characterization and testing program, (b) designing the repository and engineered barrier system, and (c) assessing performance. The greatest concern for hydrological performance is source of water that would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. The primary sources of liquid water are: ... continued below

Physical Description

19 p.

Creation Information

Buscheck, T.A.; Nitao, J.J. & Saterlie, S.F. January 1, 1994.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Authors

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Heat generated as a result of emplacing spent nuclear fuel will significantly affect the pre- and post-closure performance of the Mined Geological Disposal System (MGDS) at the potential repository site in Yucca Mountain. Understanding thermo-hydrological behavior under repository thermal loads is essential in (a) planning and conducting the site characterization and testing program, (b) designing the repository and engineered barrier system, and (c) assessing performance. The greatest concern for hydrological performance is source of water that would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. The primary sources of liquid water are: (1) natural infiltration, (2) condensate generated under boiling conditions, and (3) condensate generated under sub-boiling conditions. Buoyant vapor flow, occurring either on a sub-repository scale or on a mountain scale, any affect the generation of the second and third sources of liquid water. A system of connected fractures facilitates repository-heat-driven gas and liquid flow as well as natural infiltration. With the use of repository-scale and sub-repository-scale models, the authors analyze thermo-hydrological behavior for Areal Mass Loadings (AMLs) of 24.2, 35.9, 55.3, 83.4, and 110.5 MTU/acre for a wide range of bulk permeability. They examine the temporal and spatial extent of the temperature and saturation changes during the first 100,000 yr. They also examine the sensitivity of mountain scale moisture redistribution to a range of AMLs and bulk permeabilities. In addition, they investigate how boiling and buoyant, gas-phase convection influence thermo-hydrological behavior in the vicinity of emplacement drifts containing spent nuclear fuel.

Physical Description

19 p.

Notes

INIS; OSTI as DE95002404

Source

  • International high-level radioactive waste management conference, Las Vegas, NV (United States), 22-26 May 1994

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Other: DE95002404
  • Report No.: UCRL-JC--115352
  • Report No.: CONF-940553--82
  • Grant Number: W-7405-ENG-48
  • DOI: 10.2172/145594 | External Link
  • Office of Scientific & Technical Information Report Number: 145594
  • Archival Resource Key: ark:/67531/metadc626469

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 1, 1994

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 16, 2016, 7:02 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Buscheck, T.A.; Nitao, J.J. & Saterlie, S.F. Evaluation of thermo-hydrological performance in support of the thermal loading systems study, report, January 1, 1994; California. (digital.library.unt.edu/ark:/67531/metadc626469/: accessed May 26, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.