Optimization of soil mixing technology through metallic iron addition.

PDF Version Also Available for Download.

Description

Enhanced soil mixing is a process used to remove volatile organic compounds (VOCs) from soil. In this process, also known as soil mixing with thermally enhanced soil vapor extraction, or SM/TESVE, a soil mixing apparatus breaks up and mixes a column of soil up to 9 m (30 ft) deep; simultaneously, hot air is blown through the soil. The hot air carries the VOCs to the surface where they are collected and safely disposed of. This technology is cost effective at high VOC concentrations, but it becomes cost prohibitive at low concentrations. Argonne National Laboratory-East conducted a project to evaluate ... continued below

Physical Description

Medium: P; Size: 120 pages

Creation Information

Moos, L. P. January 15, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Enhanced soil mixing is a process used to remove volatile organic compounds (VOCs) from soil. In this process, also known as soil mixing with thermally enhanced soil vapor extraction, or SM/TESVE, a soil mixing apparatus breaks up and mixes a column of soil up to 9 m (30 ft) deep; simultaneously, hot air is blown through the soil. The hot air carries the VOCs to the surface where they are collected and safely disposed of. This technology is cost effective at high VOC concentrations, but it becomes cost prohibitive at low concentrations. Argonne National Laboratory-East conducted a project to evaluate ways of improving the effectiveness of this system. The project investigated the feasibility of integrating the SM/TESVE process with three soil treatment processes--soil vapor extraction, augmented indigenous biodegradation, and zero-valent iron addition. Each of these technologies was considered a polishing treatment designed to remove the contaminants left behind by enhanced soil mixing. The experiment was designed to determine if the overall VOC removal effectiveness and cost-effectiveness of the SM/TESVE process could be improved by integrating this approach with one of the polishing treatment systems.

Physical Description

Medium: P; Size: 120 pages

Notes

OSTI as DE00012366

Source

  • 10th National Technology Information Exchange (TIE) Workshop, Willowbrook, IL (US), 10/27/1998--10/29/1998

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ESH/CP-98216
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 12366
  • Archival Resource Key: ark:/67531/metadc626420

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 15, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • March 30, 2016, 1:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Moos, L. P. Optimization of soil mixing technology through metallic iron addition., article, January 15, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc626420/: accessed April 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.