A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials

PDF Version Also Available for Download.

Description

A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and ... continued below

Physical Description

131 Kilobytes pages

Creation Information

Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J. & al, et October 1, 1999.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data.

Physical Description

131 Kilobytes pages

Notes

INIS; OSTI as DE00014390

Source

  • Other Information: PBD: 1 Oct 1999

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PPPL-3371
  • Grant Number: AC02-76CH03073
  • DOI: 10.2172/14390 | External Link
  • Office of Scientific & Technical Information Report Number: 14390
  • Archival Resource Key: ark:/67531/metadc626310

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • October 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 15, 2016, 10:07 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 5

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J. & al, et. A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials, report, October 1, 1999; Princeton, New Jersey. (digital.library.unt.edu/ark:/67531/metadc626310/: accessed September 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.