High-brightness beam diagnostics for the APS linac.

PDF Version Also Available for Download.

Description

The Advanced Photon Source (APS) injector includes an S-band linac with the capability to accelerate beams to 650 MeV. The linac has recently been upgraded with the installation of an rf thermionic gun in addition to the standard DC thermionic gun. The rf gun is predicted to have lower emittance (5{pi}mm mrad) and may be used to support the APS self-amplified spontaneous emission (SASE) experiments. The critical characterization of this gun's beam has begun with a beam diagnostics station at the end of the linac that can address beam transverse size, emittance, and bunch length (peak current). This station uses ... continued below

Physical Description

5 p.

Creation Information

Lumpkin, A. H. April 20, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Advanced Photon Source (APS) injector includes an S-band linac with the capability to accelerate beams to 650 MeV. The linac has recently been upgraded with the installation of an rf thermionic gun in addition to the standard DC thermionic gun. The rf gun is predicted to have lower emittance (5{pi}mm mrad) and may be used to support the APS self-amplified spontaneous emission (SASE) experiments. The critical characterization of this gun's beam has begun with a beam diagnostics station at the end of the linac that can address beam transverse size, emittance, and bunch length (peak current). This station uses both an optical transition radiation (OTR) screen at 45{degree} to the beam direction and a Ce-doped YAG single crystal normal to the beam with a 45{degree} mirror behind it. The visible light images are detected by a Vicon CCD camera and a Hamamatsu C5680 synchroscan streak camera. Spatial resolution of about 30 {micro}m ({sigma}) and temporal resolution of 1 ps ({sigma}) have been demonstrated. Examples of rf gun beam characterization at 220 MeV are reported.

Physical Description

5 p.

Notes

INIS; OSTI as DE00011145

Medium: P; Size: 5 pages

Source

  • 1999 Particle Accelerator Conference (PAC '99), New York, NY (US), 03/29/1999--04/02/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: ANL/ASD/CP-97748
  • Grant Number: W-31109-ENG-38
  • Office of Scientific & Technical Information Report Number: 11145
  • Archival Resource Key: ark:/67531/metadc626262

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 20, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 11, 2017, 12:35 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Lumpkin, A. H. High-brightness beam diagnostics for the APS linac., article, April 20, 1999; Illinois. (digital.library.unt.edu/ark:/67531/metadc626262/: accessed September 24, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.