Solid state reaction of Al and Zr in Al/Zr multilayers: A calorimetry study

PDF Version Also Available for Download.

Description

The exothermic, solid state reaction of Al and Zr has been studied in thick Al/Zr multilayers using Differential Scanning Calorimetry and X-ray diffraction. The multilayer samples were magnetron sputter deposited into highly textured alternate layers of Al and Zr with nominal composition Al{sub 3}Zr. The samples used in this study were 47{mu}m thick with a 427{Angstrom} period. When samples were isochronally scanned from 25 to 725C, a large exotherm at {approximately}350C was followed by one or two smaller exotherms at {approximately}650C. The first exotherm is dominated by a diffusion based reaction of Al and Zr that produces two phases in ... continued below

Physical Description

8 p.

Creation Information

Blobaum, K.J.; Weihs, T.P.; Barbee, T.W. Jr. & Wall, M.A. April 14, 1995.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 11 times , with 5 in the last month . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The exothermic, solid state reaction of Al and Zr has been studied in thick Al/Zr multilayers using Differential Scanning Calorimetry and X-ray diffraction. The multilayer samples were magnetron sputter deposited into highly textured alternate layers of Al and Zr with nominal composition Al{sub 3}Zr. The samples used in this study were 47{mu}m thick with a 427{Angstrom} period. When samples were isochronally scanned from 25 to 725C, a large exotherm at {approximately}350C was followed by one or two smaller exotherms at {approximately}650C. The first exotherm is dominated by a diffusion based reaction of Al and Zr that produces two phases in isochronal scans: amorphous Al-Zr and cubic Al{sub 3}Zr, and two additional phases in isothermal anneals: Al{sub 2}Zr and tetragonal Al{sub 3}Zr. The exothermic heat from this multi-phase reaction is measured using isochronal scans and isothermal anneals, and the heat flow is analyzed using a 1-D diffusion based model. An average activation energy and a diffusion constant are determined. In the isothermal scans, the total exothermic heat increases linearly with {radical}time, and layer thicknesses vary linearly with heat.

Physical Description

8 p.

Notes

OSTI as DE95015882

Source

  • Spring meeting of the Materials Research Society (MRS), San Francisco, CA (United States), 17-21 Apr 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE95015882
  • Report No.: UCRL-JC--118965
  • Report No.: CONF-950412--34
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 100049
  • Archival Resource Key: ark:/67531/metadc626172

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • April 14, 1995

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • Feb. 23, 2016, 12:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 5
Total Uses: 11

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Blobaum, K.J.; Weihs, T.P.; Barbee, T.W. Jr. & Wall, M.A. Solid state reaction of Al and Zr in Al/Zr multilayers: A calorimetry study, article, April 14, 1995; California. (digital.library.unt.edu/ark:/67531/metadc626172/: accessed November 17, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.