Microstructure of Amorphous-Silicon-Based Solar Cell Materials by Small-Angle X-Ray Scattering; Final Subcontract Report: 6 April 1994 - 30 June 1998

PDF Version Also Available for Download.

Description

This report describes work performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys for the nanometer size scale. The materials studied were prepared by current state-of-the-art deposition methods, as well as new and emerging deposition techniques. The purpose was to establish the role of microstructural features in controlling the opto-electronic and photovoltaic properties. The approach centered around the use of the uncommon technique of small-angle X-ray scattering (SAXS), which is highly sensitive to microvoids and columnar-like microstructure. Nanovoids of H-rich clusters with 1 to 4 nm sizes in a-Si:H at the 1 vol.% level ... continued below

Physical Description

vp.

Creation Information

Williamson, D.L. (Department of Physics: Colorado School of Mines) December 8, 1998.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

This report describes work performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys for the nanometer size scale. The materials studied were prepared by current state-of-the-art deposition methods, as well as new and emerging deposition techniques. The purpose was to establish the role of microstructural features in controlling the opto-electronic and photovoltaic properties. The approach centered around the use of the uncommon technique of small-angle X-ray scattering (SAXS), which is highly sensitive to microvoids and columnar-like microstructure. Nanovoids of H-rich clusters with 1 to 4 nm sizes in a-Si:H at the 1 vol.% level correlate with poor solar-cell and opto-electronic behavior. Larger-scale features due either to surface roughness or residual columnar-like structures were found in present state-of-the-art device material. Ge alloying above about 10 to 20 at.% typically leads to significant increases in heterogeneity , and this has been shown to be due in part to non-uniform Ge distributions. Ge additions also cause columnar-like growth, but this can be reduced or eliminated by enhanced ion bombardment during growth. In contrast, C alloying typically induces a random nanostructure consisting of a narrow size distribution of 1-nm-sized objects with a high density, consistent with the notably poorer opto-electronic behavior of these alloys.

Physical Description

vp.

Notes

OSTI as DE00014403

Source

  • Other Information: Supercedes report DE00014403; PBD: 8 Dec 1998

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: NREL/SR-520-25844
  • Grant Number: AC36-83CH10093
  • DOI: 10.2172/14403 | External Link
  • Office of Scientific & Technical Information Report Number: 14403
  • Archival Resource Key: ark:/67531/metadc626014

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • December 8, 1998

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • March 28, 2016, 8:24 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 17

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Williamson, D.L. (Department of Physics: Colorado School of Mines). Microstructure of Amorphous-Silicon-Based Solar Cell Materials by Small-Angle X-Ray Scattering; Final Subcontract Report: 6 April 1994 - 30 June 1998, report, December 8, 1998; Golden, Colorado. (digital.library.unt.edu/ark:/67531/metadc626014/: accessed October 17, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.