The role of fault zones in affecting multiphase flow at Yucca Mountain

PDF Version Also Available for Download.

Description

Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is ... continued below

Physical Description

8 p.

Creation Information

Tsang, Y.W.; Pruess, K. & Wang, J.S.Y. January 1, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Within Yucca Mountain, the potential High Level Nuclear-Waste Repository site, there are large scale fault zones, most notably the Ghost Dance Fault. The effect of such high-permeability, large scale discontinuities on the flow and transport is a question of concern in assessing the ability of the site to isolate radio-nuclides from the biosphere. In this paper, we present a numerical study to investigate the role of the fault in affecting both the liquid and gas phase flows in the natural state at Yucca Mountain prior to waste emplacement, as well as after the waste emplacement when the fluid flow is strongly heat-driven. Our study shows that if the characteristic curves of the Ghost Dance Fault obey the same relationship between saturated permeability and capillary scaling parameter, as is observed from the measured data of Yucca Mountain welded and nonwelded tuffs. Apache Leap tuffs, and Las Cruces soil, then a large saturated permeability of the Ghost Dance Fault will play little role in channeling water into the fault, or inenhancing the flow of water down the fault. However, the Fault may greatly enhance the upward gas flow after emplacement of waste. This may have implications on the transport of gaseous radio-nuclides such as C{sup 14}. The results of this study also focus attention on the need for field measurements of fluid flow in the fault zones.

Physical Description

8 p.

Notes

INIS; OSTI as DE93010431

Source

  • 10. international high-level radioactive waste management conference, Las Vegas, NV (United States), 25-29 Apr 1993

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE93010431
  • Report No.: LBL--33661
  • Report No.: CONF-930408--52
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 138758
  • Archival Resource Key: ark:/67531/metadc626006

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 1993

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 5, 2016, 10:39 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 6

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Tsang, Y.W.; Pruess, K. & Wang, J.S.Y. The role of fault zones in affecting multiphase flow at Yucca Mountain, article, January 1, 1993; California. (digital.library.unt.edu/ark:/67531/metadc626006/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.