DEPENDENCE OF THE YIELD OF THE (α,n) REACTION ON ALPHA PARTICLE ENERGY

E. M. Tsenter and A. B. Silin

Translated by K. W. Foster

AEC Research and Development REPORT

RECEIVED
OCT 1 1 1995
OSTI

MONSANTO RESEARCH CORPORATION
A SUBSIDIARY OF MONSANTO COMPANY

MOUND LABORATORY
MIAMISBURG, OHIO
OPERATED FOR
UNITED STATES ATOMIC ENERGY COMMISSION
U.S. GOVERNMENT CONTRACT NO. AT-33-1-GEN-53

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.
DEPENDENCE OF THE YIELD OF THE \((\alpha, n)\) REACTION
ON ALPHA PARTICLE ENERGY

E. M. Tsenter
A. B. Silin

Translated by K. W. Foster

From Atomnaya Energiya (SSSR) 19, 48 (July, 1965).

Copyright releases have not been obtained
from the publisher or the authors.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MONSANTO RESEARCH CORPORATION
A Subsidiary of Monsanto Company

MOUND LABORATORY
Miamisburg, Ohio

operated for

UNITED STATES ATOMIC ENERGY COMMISSION

U.S. GOVERNMENT CONTRACT NO. AT-33-I-GEN-53

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Neutron yields resulting from \((\alpha, n)\) reactions have a practical interest, particularly for many radiation monitoring problems.\(^1\) Data for yields for the \((\alpha, n)\) reaction of different elements are necessary for solution of some problems in geochemistry and geophysics.\(^6\)-\(^10\)

Reference 11 contains the empirical formula

\[n = 0.152 E^{3.56} \] \hspace{1cm} (1)

for the dependence of the neutron yield from beryllium on alpha particle energy. Formula (1) was developed from three values of alpha particle energy:

\[E_\alpha = 5.14 \text{ MeV (Pu}^{239}\text{)}, \]
\[E_\alpha = 5.48 \text{ MeV (Am}^{241}\text{)}, \]
\[E_\alpha = 6.11 \text{ MeV (Cm}^{242}\text{)}. \]

Analogous empirical formulas of the type

\[Q = k E^n \] \hspace{1cm} (2)

are given for a number of substances in references 12 and 13. For determination of \(k\) and \(n\), authors of these works utilized values of \(Q\) that they measured with sources of polonium-210 \((E_\alpha = 5.3 \text{ MeV})\), radium C' \((E_\alpha = 7.68 \text{ MeV})\), and radon + radium A + radium C' \((E_\alpha = 5.5, 6.0, \text{ and } 7.68 \text{ MeV, respectively})\).

It is not possible to utilize these formulas with energies above the cited limits without special verification. Verification is also necessary to confirm that the indicated formulas correspond to curves with monotonically increasing first derivatives of energy. In general, such monotonicities are not necessary in the

case of resonance peaks in the curve of neutron dependence of reaction cross section on the alpha particle energy.

For beryllium, boron, carbon, magnesium and oxygen there exist in the literature curves for the cross section of the reaction \((\alpha, n)\) for energies up to 5.3 MeV.\(^{14,15}\) With these cross sections it is possible to calculate the dependence of the neutron yield on the alpha particle energy. Data necessary for calculation of loss of alpha particle energy per unit track length were the result of the conversion of energy loss in air\(^{16}\) according to well-known values of relative stopping power, and which we considered to be constant in the energy intervals under consideration.

For oxygen-18 the dependence \(\sigma(E)\) is presented in references \(^{14}\) and \(^{15}\). Taking into account \((\alpha, n)\) reactions on oxygen composed principally of oxygen-18, it is possible to compare the results of such calculation (See Figure 1a, Curve 1) with experimental data produced by a natural mixture of oxygen isotopes.\(^{17-19}\)

Calculation of the value 4.5 neutrons per \(10^8\) alpha particles, with an energy of 5.3 MeV (converted to a natural mixture of oxygen isotopes) disagrees with the experimental value for this point, i.e., 7 neutrons per \(10^8\) alpha particles,\(^{18,19}\) by \(-35\%\). The latest value derived by the other authors as a result of direct experiments appears to be more reliable than what was calculated by us with cross sections from reference \(^{15}\), the precision of which is no better than 25%. Obviously Curve 1 (Figure 1a) accurately reflects the character of the dependence of neutron yield on the alpha-particle energy, so we derived the curve more closely to the true curve by normalizing Curve 1 to experimental values at 5.3 MeV (see Curve 3, Figure 1a). Also presented in Figure 1a is Curve 2, derived from formula (2).

Calculations were likewise performed for beryllium, boron, carbon, and magnesium, using cross sections given in references \(^{14}\) and \(^{15}\); analogous graphs were plotted (see Figures 1b, 1c, 1d, and 1e). The numbers 1, 2 and 3, respectively, are designated as in Figure 1a. Moreover, in Figure 1b is presented Curve 4, which corresponds to formula (1).

It should be possible to compare formula (2) for oxygen with data given in reference \(^{20}\). The author reports two new neutron sources developed by S. Amiel and A. Nier. One of these sources is polonium-210/oxygen-18 (The neutron yield is 30 neutrons per \(10^8\) alpha particles, and the average neutron energy is approximately 2.4 MeV).
Figure 1
In reference 17 the neutron yield for the polonium-210/oxygen-18 source is given as 31 neutrons per 10^8 alpha particles. In 1959 data were published on the gamma radiation21 and neutron spectrum22 of the neutron source polonium-210/oxygen-18. The maximum of the energy curve was at 2.4 MeV. In reference 20 the data of the neutron yield from the source thorium-228/oxygen-18 are questionable (1500 neutrons per 10^8 alpha particles). Energies of alpha particles from thorium-228 and its decay products are equal to 5.4, 5.7, 6.3, 6.8, 6.08, and 8.8 MeV23 the last group occurs in a portion of approximately 13%. For alpha particles of radium C ($E_a = 7.68$ MeV) the yield from (α,n) conversion on oxygen-18 is 280 neutrons per 10^6 alpha particles.12 Judging from the spectrum of alpha particles, the neutron yield from the source thorium-228/oxygen-18 must be smaller than the neutron yield from the source radium C'/oxygen-18. Thus, the value of 1500 neutrons per 10^8 alpha particles reported in reference 20 is overestimated by approximately one order of magnitude.
REFERENCES

1. V. V. Ivanov et al., At. Energ., 7, 166 (1959).

