μ+SR Studies of Magnetic Properties of Boron Carbide Superconductors

L.P. Le¹, R.H. Heffner¹, G.J. Nieuwenhuys², P.C. Canfield³, B.K. Cho³, A. Amato⁴, R. Feyerherm⁴, F.N. Gygax⁴, D.E. MacLaughlin⁵, A. Schenck⁴

¹Los Alamos National Laboratory, Los Alamos, NM 87545, USA
²Kamerlingh Onnes Laboratory, Leiden University, The Netherlands
³Ames Laboratory, Iowa State University, Ames, IA 50011, USA
⁴I.M.P., ETH-Zürich, CH-5232 Villigen PSI, Switzerland
⁵University of California, Riverside, CA 92521, USA

Positive-muon spin relaxation (μ+SR) has been carried out in the recently-discovered rare-earth boron carbide superconductors RNi₅B₂C, R = Ho, Er and Tm. For R = Ho and Er zero-field μ+SR measurements showed a well-defined internal field below the Néel temperatures of 5.5 K coexisting with the superconducting state down to 0.1 K. The observed temperature dependence of the order parameter for Ho is consistent with a 2-dimensional Ising model. For R = Tm a spontaneous internal field appears above 30 K, whose magnitude saturates below about 3 K at a value corresponding to a rare earth moment much smaller than for Ho and Er. Transverse-field μ+SR measurements in R = Tm showed a superconducting penetration depth $\lambda = 1,200$ Å. The temperature dependence of λ is consistent with conventional s-wave pairing.

Keywords: superconductivity, magnetism, μ+SR
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Author to whom correspondence should be addressed:
Lianping Le
Materials Division, MS K764
Los Alamos National Laboratory
Los Alamos, NM 87545 USA
FAX: (505) 665-7652
Email: le@gold.lansce.lanl.gov
Recently, superconductivity has been discovered in several intermetallic boron carbide compounds, with the highest T_c being above 20 K [1,2]. In the series RNi$_2$B$_2$C, superconductivity is depressed gradually with increasing de Gennes factor G of the rare-earth element R, and is quenched completely for R = Dy and Tb, which have the largest G. For the systems with middle-ranged G (R = Ho, Er and Tm), magnetic order is found to coexist with superconductivity [3]. These features are reminiscent of the rare-earth rhodium borides RRh$_4$B$_4$ and Chevrel phases RMoxS$_8$ [4]. In order to understand their magnetic nature, as well as the interplay between superconductivity and magnetism in these systems, we performed $\mu^+\text{SR}$ studies [5] in RNi$_2$B$_2$C, with R = Ho, Er and Tm.

The $\mu^+\text{SR}$ experiments were performed at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, using the Low Temperature Facility and the General Purpose Spectrometer. Polycrystalline samples of RNi$_2$B$_2$C were prepared as previously described [2], and then powdered and pressed into pellets which were attached to the cryostat cold finger.

The zero-field $\mu^+\text{SR}$ spectra were well described by

$$A(t) = A \left[(1/3) \exp(-\lambda_1 t) + (2/3) \exp(-\lambda_2 t) \cos(2\pi v_\mu t) \right].$$

(1)

The first term corresponds to the relaxation of the muon polarization parallel to the internal field and thus the relaxation rate λ_1 reflects the dynamic properties of the host moments. The second term describes muon precession transverse to the internal field and therefore λ_2 represents relaxation due both to dynamic effects and static field inhomogeneities. In a polycrystalline specimen the ratio of the amplitudes is 1:2.

For R = Ho and Er a well-defined muon-spin precession frequency v_μ is observed below the Néel temperatures T_N = 5.5 K. The observation of v_μ in zero external field indicates the onset of magnetic order, where the spontaneous magnetization is proportional to v_μ. The frequency is 59 MHz for Ho and 40 MHz for Er at the lowest measured temperature of 0.1 K and 3 K, respectively. The large values of v_μ (about 10 times larger than observed in La$_2$CuO$_4$ [6]) indicate a frozen moment of several μ_B, consistent with that expected from Ho and Er.
As shown in Fig. 1, for $R = \text{Ho}$, v_μ remains almost constant from 0.1 K up to 5 K and then drops rapidly. The weak temperature dependence of v_μ below 5 K indicates a strong suppression of low-energy excitations, and the rapid change of v_μ around T_N indicates an abrupt and possibly first-order transition. However, neither our ZF-μ^+SR nor susceptibility measurements show signs of thermal hysteresis near T_N.

We are able to fit $v_\mu(T)$ quite well using a 2-dimensional (2D) Ising model, for an intra-plane ferromagnetic exchange interaction $J/k_B = 2.4$ K (solid line in Fig. 1). This yields a sharp but second-order phase transition at T_N. Such a temperature dependence of the sublattice magnetization is not unreasonable considering the crystal structure and the possible effects of the crystal field splitting. HoNi$_2$B$_2$C has a 2D crystal structure, where the HoC layers alternate with the Ni$_2$B$_2$ layers [7]. A strong anisotropy has been observed in the normal-state susceptibility on a single crystal, which leads to the frozen Ho moments in the basal ab-plane [8]. Crystal field parameters have not been determined for this system. We note, however, that the Ho-ion ground state in HoRh$_4$B$_4$, also possessing a tetragonal structure, exhibits an Ising behavior due to crystal field splitting [9].

Figure 1 also shows the temperature dependence of v_μ in TmNi$_2$B$_2$C. A muon precession frequency appears at the rather high temperature of 30 K. Between 20 and 3 K, v_μ is inversely proportional to temperature, $v_\mu = C/T$, where $C = 4.3$ MHz·K (dashed line in Fig. 1), consistent with previous ZF-μ^+SR studies by Cooke et al. [10]. Below 3 K, v_μ starts to saturate, reaching a maximum of 1.6 MHz near 1.5 K, which corresponds to T_N obtained by the specific heat [11] and resistivity measurements [3]. In comparison with $R = \text{Ho and Er}$, $v_\mu(T)$ for $R = \text{Tm}$ is distinctively different. No abrupt onset of magnetic order is observed. Furthermore, the local field below T_N is 25 - 35 times smaller for $R = \text{Tm}$ than for Ho and Er.

The magnitude of v_μ found below 3 K in TmNi$_2$B$_2$C corresponds to a local field of about 120 G. Assuming dipolar $\mu^+\text{-Tm}$ coupling, this corresponds to a frozen moment of order 0.1 μ_B, much smaller than the free-ion value for Tm (7.7 μ_B) deduced from the
susceptibility [3]. If one associates this internal field with Tm ordering, the reduced frozen-moment could be due to crystal-field effects and/or rapid, limited-amplitude fluctuations. Longitudinal field measurements at 0.83 K were performed to elucidate the spin dynamics. At $H_L = 1$ kG, the precession signal disappears, but significant μ^+ relaxation is still observed. This relaxation rate was changed only slightly in applied field up to 10 kG, indicating fluctuation rates at least as large as $\nu_H H_L \sim 10^9$ s$^{-1}$. The simultaneous occurrence of precession in a local field of 120 G and fluctuation rates of order 10^9 s$^{-1}$ can only occur if the fluctuations are of limited amplitude (giving rise to a small frozen moment), or if there are two independent sources for the local field sensed by the muon: one producing precession and the other relaxation. Further experiments and analysis will be undertaken to explore these possibilities.

It is generally difficult to investigate the superconducting properties of these magnetic superconductors because the relaxation rate from the magnetic ions is often too large and temperature dependent to permit a clear observation of field broadening due to the superconducting vortex lattice. For $R = \text{Ho}$ we found it even impossible to determine the superconducting transition temperature T_c using μ^+SR. The strong internal magnetic fields apparently cause the same problems for other techniques. The superconducting penetration depth λ, for instance, has not yet been determined for the Ho or Er compounds.

Here we report TF-μ^+SR measurements in TmNi$_2$B$_2$C, where we are able to separate the superconducting signal from large magnetic background. The spectra were fitted with

$$A(t) = A \exp[-(\alpha \mu t)^2/2] \exp(-\lambda_s t) \cos(2\pi \nu_{\mu} t).$$

(2)

The temperature dependence of $\sigma_s(T)$ (solid circles) and $\lambda_s(T)$ (open triangles) under a transverse field of 1 kG is shown in Fig. 2. A rather sudden enhancement of σ_s is found below 10.5 K (which corresponds to the reported T_c [2]), while λ_s varies smoothly with temperature. We thus attribute σ_s to superconductivity and λ_s to magnetism. Multiplication of Gaussian and exponential relaxation functions in Eq. (2) indicates that
muons see both relaxation processes due to superconductivity and magnetism simultaneously. The values of λ_s are comparable with the zero-field relaxation rates attributed to magnetic relaxation.

In a type-II superconductor, a field broadening ΔB due to the formation of the vortex lattice reflects the superconducting penetration depth λ as $\sigma \propto \Delta B \propto \lambda^{-2}$. Since σ_s above T_c is nearly temperature independent, we assume that this residual relaxation rate also remains unchanged below T_c. Thus $\sigma^2(T) = \sigma_s^2(T_0)$. We then find that $\sigma(T)$ can be best described by the weak-coupling BCS theory (solid line in Fig. 2). This is consistent with a conventional s-wave pairing in TmNi$_2$B$_2$C. The extrapolated relaxation rate $\sigma(0) = 7.5 \, \mu \text{s}^{-1}$ yields a powder-averaged $\lambda = 1,200$ Å, comparable with the in-plane $\lambda = 1,500$ Å obtained in the non-magnetic superconductor YNi$_2$B$_2$C [12]. Using the upper critical field $H_{c2} \approx 2.5$ Tesla [3], we further calculate the Ginzburg-Landau parameter $\kappa = 10$ and the lower critical field $H_{c1} = 250$ G.

In conclusion, we have investigated magnetic properties of RNi$_2$B$_2$C, where $R =$ Ho, Er and Tm. We observed spontaneous magnetic order in all three systems below T_N. The temperature dependence of sublattice magnetization can be understood partially by the 2-dimensional crystal structure and possible effects of the crystal-field splitting in these systems. In TmNi$_2$B$_2$C the appearance of oscillation frequency well above T_N with a reciprocal temperature dependence is not clear at the moment. Further studies of magnetism in these rare-earth boron carbide systems should stress the difference between the Tm and Ho compounds, and the interplay between magnetic and superconducting order parameters.

The authors acknowledge the FOM-ALMOS center for preparing ErNi$_2$B$_2$C, J.D. Thompson for susceptibility measurements on HoNi$_2$B$_2$C and TmNi$_2$B$_2$C, Stefen Sülow for resistivity measurements on ErNi$_2$B$_2$C, J.D. Thompson and M. Xu for useful discussions. Work at Los Alamos was performed under the auspices of USDOE, and at
UC Riverside was supported in part by the USNSF (DMR-9114911). Ames Laboratory is operated for the USDOE by Iowa State University under Contract no. W-7405-ENG-82.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
References

Figure Captions

Fig. 1. Temperature dependence of zero-field muon-spin precession frequency observed in HoNi$_2$B$_2$C, ErNi$_2$B$_2$C and TmNi$_2$B$_2$C. The solid line denotes 2-dimensional Ising model, and the dashed line denotes a reciprocal temperature dependence.

Fig. 2. Temperature dependence of transverse-field Gaussian and exponential relaxation rate observed in TmNi$_2$B$_2$C. The solid line refers to weak-coupling BCS theory.