U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

STATUS OF AEROMAGNETIC SURVEY COVERAGE OF YUCCA MOUNTAIN AND VICINITY TO A RADIUS OF ABOUT 140 KILOMETERS, SOUTHWESTERN NEVADA AND SOUTHEASTERN CALIFORNIA, 1992

By
R.F. Sikora, D.A. Ponce, and H.W. Oliver

Accession Number: NNA.931104.0012
Open-File Report 93-44

Prepared in cooperation with the
NEVADA OPERATIONS OFFICE
U.S. DEPARTMENT OF ENERGY
(Interagency Agreement DE-AI08-76ET44502)

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Company names are for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey.

Menlo Park, California
1993
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY

STATUS OF AEROMAGNETIC SURVEY COVERAGE
OF YUCCA MOUNTAIN AND VICINITY
TO A RADIUS OF ABOUT 140 KILOMETERS,
SOUTHWESTERN NEVADA AND
SOUTHEASTERN CALIFORNIA, 1992

By

R.F. Sikora, D.A. Ponce, and H.W. Oliver

Accession Number: NNA.931104.0012
Open-File Report 93-44

Prepared in cooperation with the
NEVADA OPERATIONS OFFICE
U.S. DEPARTMENT OF ENERGY
(Interagency Agreement DE-AI08-78ET44802)

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Company names are for descriptive purposes only and do not constitute endorsement by the U.S. Geological Survey.

Menlo Park, California
1993

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
CONTENTS

Abstract ... 1

Introduction ... 1

Aeromagnetic surveys ... 1

Magnetic anomaly map .. 2

Conclusion .. 3

References cited ... 7

FIGURES

FIGURE 1. Index map showing locations and numbers of aeromagnetic surveys in study area. ... 4

FIGURE 2 Index map of the aeromagnetic compilation showing a summary of spacing and altitudes of the various magnetic surveys. ... 5

FIGURE 3 Residual total intensity aeromagnetic map of the southwestern Nevada and southeastern California centered on Yucca Mountain ... 6

TABLE

TABLE 1 Aeromagnetic surveys all or partly within Yucca Mountain regional study area ... 14

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
STATUS OF AEROMAGNETIC SURVEY COVERAGE OF YUCCA MOUNTAIN AND VICINITY TO A RADIUS OF ABOUT 140 KILOMETERS, SOUTHWESTERN NEVADA AND SOUTHEASTERN CALIFORNIA, 1992

by

R.F. Sikora, D.A. Ponce, and H.W. Oliver

ABSTRACT

Fifty aeromagnetic surveys in the southwestern part of Nevada and the southeastern part of California have been evaluated to assess the quality and coverage of aeromagnetic data within 140 kilometers (km) of a potential nuclear waste repository at Yucca Mountain, Nevada. The compilation shows that all the study area is covered by aeromagnetic surveys, but in some areas, particularly in the Death Valley region, new surveys flown with closer flight line spacing and lower elevations than the existing coverage are needed. In addition, the California part of the study area needs to be analytically continued downward to 305 meters (m) above ground level to provide a consistent data set for interpretation of subsurface geologic structures.

INTRODUCTION

Aeromagnetic surveys in the southwestern part of Nevada and the southeastern part of California were evaluated as part of an effort to assess the quality and coverage of the aeromagnetic data within 140 km of a potential nuclear waste repository at Yucca Mountain, Nevada (U.S. Department of Energy, 1988). These data are of intrinsic value in characterizing geologic structure and mineral resource potential. The study area extends from latitudes 35°30' to 38° N. and longitudes 115° to 118° W. (fig. 1). This report includes a listing of 50 aeromagnetic surveys including various parameters of each survey, such as boundaries, spacing of flight lines and types of surveys.

AEROMAGNETIC SURVEYS

Fifty aeromagnetic surveys have been flown in the study area (table 1, fig. 1). Table 1 lists the flight specifications of each survey including the name of the survey area, year flown, flight contractor, flight elevation, flight-line spacing, flight-line direction, scale of the published survey, whether or not a regional gradient was removed, and if the aeromagnetic data exists in digital or analog form. Flight-line specifications were originally in feet for elevations and miles for spacing. Both have been converted to km. Previous reports by Erwin and others (1980) and Hill (1986) greatly aided in the process of identifying surveys. Figure 1 outlines the boundaries.
of each of the individual surveys listed in table 1. Numbering of these areas incorporated previous nomenclature of earlier reports whenever possible.

Figure 2 summarizes the flight-line spacings and whether a survey was flown at a constant barometric elevation or draped at a constant height above terrain. Aeromagnetic surveys were divided into six levels of quality, ranging from 0.4- to 0.8-km spaced data to 1.6- to 4.8-km spaced National Uranium Resource Evaluation (NURE) data (U.S. Department of Energy, 1979a-f). NURE data cover the entire study area and are only shown on figure 3 where no other surveys exist.

Figure 2 helps to delineate areas where the data coverage is inadequate for regional and detailed modeling of structures. Less than 40 percent of the surveys are in digital form, and many were flown and compiled in the late 1950’s to mid-1960’s. About 75 percent of the surveys were flown at a constant elevation of over 2.3 km and 65 percent have a profile spacing of 1.6 km or greater. NURE data, about 11 percent of the total area, are the only magnetic survey data available for a large area west of Yucca Mountain. These NURE surveys are inadequate because the flight spacings (4.8 km in general, 1.6 km over the Death Valley area) are too large, relative to the 120-m terrain clearance. The minimum flight-spacing/height ratio of the NURE data is about 13, much larger than the generally recommended ratio of 2 for quality interpretation of aeromagnetic surveys (Reid, 1980). By comparison with overlapping 0.4-km spaced data in the Amargosa Desert, just east of Death Valley, the NURE magnetic data were found to miss about a third of the small near-surface magnetic anomalies thought to be volcanic centers buried by alluvium.

Nevada aeromagnetic surveys have recently been merged and analytically continued to 305 m (Hildenbrand and Kucks, 1988). However, individual magnetic surveys in California have not been merged. Merging the California surveys would help in the overall interpretation of the study area by creating one map across the California-Nevada border at the same datum. Many individual surveys still need to be evaluated for possible data and location errors. Some surveys that are available in digital form might be on tapes that are no longer readable (P.L. Hill, U.S. Geological Survey, written commun., 1990). Additional work will be required to assess and merge any new aeromagnetic surveys to a distance of 100 km from Yucca Mountain.

Although all of the regional study area is covered by some type of aeromagnetic survey, data for the regions just west of the site area toward and including Death Valley are inadequate for the regional geologic characterization of the potential Yucca Mountain repository (fig. 2).

MAGNETIC ANOMALY MAP

A mosaicked aeromagnetic map of the study area (fig. 3) was derived from two aeromagnetic compilations. The Nevada part is a subset of a statewide compilation by Hildenbrand and Kucks (1988), and includes many, but not all of the aeromagnetic surveys shown in that part of Nevada (fig. 2). Each survey was gridded at a 1-km interval, corrected for a regional field, merged, and analytically continued to 305 km above the terrain. The California portion of the aeromagnetic map is from the residual total magnetic anomaly map of the Great Basin by Hildenbrand and others (1988). It is a compilation of surveys with various flight spacings and elevations. These data were analytically continued to a barometric elevation of 3.8 km above sea level and gridded at a 2-km interval. Thus, the
An interpretation of the geologic significance of the magnetic anomalies shown in figure 3 is beyond the scope of the present paper. Briefly, regional magnetic highs of several hundred nT occur over mountainous areas in California east of Owens Lake, south of China Lake, and parts of the Funeral Mountains along the California-Nevada border. A large magnetic high occurs over the Spring Mountains, about 40 km west of Las Vegas and is probably caused by a broadly domed upwarp of Precambrian basement (Blank, 1988). Part of this magnetic high over the Spring Mountains is coincident with a shorter wave-length 15-mGal gravity low suggesting the existence of an iron-rich low-density intrusion within the Precambrian basement (H.R. Blank, U.S. Geological Survey, written commun., 1989).

Anomaly A (fig.3) occurs over the northern parts of Yucca Mountain and the depth to the top of the source has been estimated at about 2.1 km from detailed data (G.D. Bath, U.S. Geological Survey, written commun., 1984). The source of the magnetic anomaly is currently unknown, but could be a westward extension of the magnetic argillite under Calico Hills. Anomaly B (fig. 3) has been drilled and found to be caused by magnetic-bearing argillite (Kane and Bracken, 1983). Some of the short wave-length anomalies in Nevada between latitudes 37° N. and 38° N. are associated with intrusions, both exposed and buried (Grauch and others, 1988). Two such anomalies located at Wahmonie (marked by C, fig. 3) and the Climax stock (D, fig. 3) have been studied by Ponce (1984) and Bath and others (1983), respectively.

Blakely (1988) discussed the regional significance of the Nevada magnetic data and has computed from them the depth of the Curie isotherm to be about 15 km under Yucca Mountain and to vary from 10 to 30 km under the Nevada portion of the study area. No Curie isotherm depths are presently available for the California portion of the study area.

CONCLUSION

Some aeromagnetic surveys used in the statewide compilation of parts of California and Nevada, particularly in the Death Valley area west of Yucca Mountain, are inadequate for the purposes of interpretation of subsurface geologic structures for the regional geologic characterization of the potential Yucca Mountain repository. Thus, new surveys need to be flown over these areas, and a merged aeromagnetic map continued to 305 m above terrain should be compiled for the study area using new higher quality data, closer flight-line spacing, and lower flight-line elevation.

Measurement Conversions:

1 kilometer (km) = 0.6214 mile
To convert kilometers (km) into miles, multiply the number of kilometers by 0.6214
Figure 1. Index map showing locations and numbers of aeromagnetic surveys in study area. Surveys are listed in Table 1. Coincident survey boundary lines have been offset for clarity. The numbers are nearest the coded boundary for each of the 50 plus aeromagnetic surveys. Areas marked NURE are covered by U.S. Department of Energy, 1979a-f data.
Figure 2. Index map of the aeromagnetic surveys for the Yucca Mountain area showing a summary of spacing (km-kilometers) and types of magnetic surveys (draped, barometric, and NURE (National Uranium Resource Evaluation surveys)). Surveys are listed in table 1 and shown on figure 1. (the boundary of the Yucca Mountain site is shown (U.S. Department of Energy, 1988)).
Figure 3. Residual total intensity aeromagnetic map of the southwestern Nevada and southeastern California centered on Yucca Mountain (YM). The California part of the map was compiled at a constant elevation 3.8 km above sea level (Hildenbrand and others, 1988). The part of Nevada was compiled at 305 m above ground (Hildenbrand and Kucks, 1988). Contour interval 25 G. Magnetic highs referred to in text are YM, Yucca Mountain; B, Calico Hills; C, Wahmonie; D, Climax stock.
REFERENCES CITED

(NNA.930330.00920)

(NNA.930118.0003)

(HQS.880517.1062)

(NNA.931104.0057)

(NNA.890327.0109)

(NNA.930414.0060)

(NNA.930414.0061)

(NNA.910506.0172)

(NNA.910506.0173)

(NNA.930608.0003-0005)

(NNA.930608.0002)

(NNA930831.0098-0103)

(NNA.910506.0176)

(NNA.881128.0011)

(NNA.930608.0006)

(HQS.880517.1290)

(HQS.880517.2727)

(NNA.930608.0007)
(NNA.930330.0095)

(NNA.930330.0096)

(NNA.930330.0097)

(NNA.930330.0098)

(NNA.930330.0099)

(NNA.930330.0100)

(NNA.930330.0101)

(NNA.930330.0102)

(NNA.930413.0078)

(NNA.930330.0103)
(NNA.920219.0008)

(NNA.930707.0049)

(NNA.930809.0009)

(NNA.910506.0175)

(NNA.930809.0010)

(NNA.930809.0011)

(NNA.930809.0012)

(NNA.930809.0013)

(HQS.881201.0002)

(NNA.931019.0016)

(NNA.930407.0142)

1979a, Aeromagnetic map of the Lone Mountain area, Nevada:
(NNA.930407.0149)

(NNA.930407.0150)

1979c, Aeromagnetic map of Quinn Canyon Range, Nevada:
(NNA.930407.0151)

(NNA.910220.0059)

(NNA.930407.0152)

(NNA.930407.0153)

(NNA.930407.0154)

(NNA.910506.0178)

(NNA.930407.0155)

(NNA.930407.0156)

(NNA.930407.0157)
(NNA.910306.0173)

(NNA.910506.0179)

(NNA.930407.0158)

(NNA.930407.0159)

(NNA.930407.0160)

(NNA.930407.0161)

NOTE: Parenthesized numbers following each cited reference are for U.S. Department of Energy Office of Civilian Radioactive Waste Management Records Management purposes only and should not be used when ordering the publication.
Table 1.-Aeromagnetic surveys all or partly within Yucca Mountain regional study area

<table>
<thead>
<tr>
<th>Area Name</th>
<th>Year flown</th>
<th>Flown by</th>
<th>Elevation (km)</th>
<th>Spacing (km)</th>
<th>Direction</th>
<th>Scale</th>
<th>Gradient</th>
<th>Digital Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber Min</td>
<td>1960-1961</td>
<td>USGS</td>
<td>2.4 b</td>
<td>0.4</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Boynton and others, 1963a</td>
</tr>
<tr>
<td>Tippipah Spring</td>
<td>1960-1961</td>
<td>USGS</td>
<td>2.4 b</td>
<td>0.4</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Boynton and others, 1963b</td>
</tr>
<tr>
<td>Cane Spring</td>
<td>1961</td>
<td>USGS</td>
<td>2.4 b</td>
<td>0.4</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Boynton and Vargo, 1963a</td>
</tr>
<tr>
<td>Topopah Spring</td>
<td>1961</td>
<td>USGS</td>
<td>2.4 b</td>
<td>0.4</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Boynton and Vargo, 1963b</td>
</tr>
<tr>
<td>Belted Peak</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965a</td>
</tr>
<tr>
<td>Black Min</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965b</td>
</tr>
<tr>
<td>Cactus Peak</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965c</td>
</tr>
<tr>
<td>Cactus Spring</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965d</td>
</tr>
<tr>
<td>Kawich Peak</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965e</td>
</tr>
<tr>
<td>Mellan</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965f</td>
</tr>
<tr>
<td>Quartzite Mt</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965g</td>
</tr>
<tr>
<td>Sarcohus Flat</td>
<td>1963-1965</td>
<td>USGS</td>
<td>2.4 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965h</td>
</tr>
<tr>
<td>Silent Canyon</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>0.8-1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965i</td>
</tr>
<tr>
<td>Wheelbarrow Pk</td>
<td>1963</td>
<td>USGS</td>
<td>2.4 b</td>
<td>0.8-1.6</td>
<td>E-W</td>
<td>1:62,500 no</td>
<td>no</td>
<td>Philbin and White, 1965j</td>
</tr>
<tr>
<td>Hot Creek</td>
<td>1966, 1967</td>
<td>USGS, Aero</td>
<td>0.12 d</td>
<td>1.6</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1968</td>
</tr>
<tr>
<td>Goldfield</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1971</td>
</tr>
<tr>
<td>Intermountain</td>
<td>1971</td>
<td>USGS</td>
<td>0.12 d</td>
<td>0.4</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>Bath, 1976</td>
</tr>
<tr>
<td>Yucca Flats</td>
<td>1971</td>
<td>USGS</td>
<td>2.7 b</td>
<td>1.6</td>
<td>N-S</td>
<td>1:150,000 no</td>
<td>no</td>
<td>USGS, 1971</td>
</tr>
<tr>
<td>Caliente, Lund</td>
<td>1979</td>
<td>USGS</td>
<td>2.7 b</td>
<td>1.6</td>
<td>N-S</td>
<td>1:165,000 no</td>
<td>no</td>
<td>USGS, 1979</td>
</tr>
<tr>
<td>Lathrop Wells</td>
<td>1978-1979</td>
<td>USGS</td>
<td>0.12 d</td>
<td>0.4-0.8</td>
<td>E-W</td>
<td>1:198,000 no</td>
<td>no</td>
<td>USGS, 1979</td>
</tr>
<tr>
<td>Lone Mt</td>
<td>1979</td>
<td>AS</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1979a</td>
</tr>
<tr>
<td>S Nevada</td>
<td>1978-1979</td>
<td>USGS</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1979b</td>
</tr>
<tr>
<td>Quinn Canyon</td>
<td>1978-1979</td>
<td>USGS</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1979c</td>
</tr>
<tr>
<td>Yucca Min</td>
<td>1977-1978</td>
<td>USGS</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1979d</td>
</tr>
<tr>
<td>Timber Min</td>
<td>1977-1978</td>
<td>USGS</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1979e</td>
</tr>
<tr>
<td>Groom Lake,</td>
<td>1980-1981</td>
<td>USGS</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1979f</td>
</tr>
<tr>
<td>Climax Stock</td>
<td>1980-1981</td>
<td>USGS</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000 no</td>
<td>no</td>
<td>USGS, 1979g</td>
</tr>
</tbody>
</table>
Table 1 continued

<table>
<thead>
<tr>
<th>Area</th>
<th>Name</th>
<th>Year flown</th>
<th>Flown by</th>
<th>Elevation (km)</th>
<th>Spacing (km)</th>
<th>Direction</th>
<th>Scale</th>
<th>Gradient removed</th>
<th>Digital</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1038</td>
<td>Blanw.</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500</td>
<td>no</td>
<td>no</td>
<td>USGS, 1967b</td>
</tr>
<tr>
<td>1039</td>
<td>Bonnie Claire</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500</td>
<td>no</td>
<td>no</td>
<td>USGS, 1967a</td>
</tr>
<tr>
<td>1041</td>
<td>Bullfrog, Bare Mtn</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500</td>
<td>no</td>
<td>no</td>
<td>USGS, 1967c</td>
</tr>
<tr>
<td>1048</td>
<td>Goldfield</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500</td>
<td>no</td>
<td>no</td>
<td>USGS, 1967d</td>
</tr>
<tr>
<td>1050</td>
<td>Grapevine Peak, Tin Mtn</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500</td>
<td>no</td>
<td>no</td>
<td>USGS, 1967e</td>
</tr>
<tr>
<td>1052</td>
<td>Magruder Mtn</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500</td>
<td>no</td>
<td>no</td>
<td>USGS, 1967f</td>
</tr>
<tr>
<td>1056</td>
<td>Rhyolite Ridge</td>
<td>1967</td>
<td>LKB</td>
<td>2.7 b</td>
<td>1.6</td>
<td>E-W</td>
<td>1:62,500</td>
<td>no</td>
<td>no</td>
<td>USGS, 1967g</td>
</tr>
<tr>
<td>1141</td>
<td>Las Vegas</td>
<td>1982</td>
<td>HLQEB</td>
<td>0.12 d</td>
<td>0.4</td>
<td>N-S</td>
<td>1:250,000</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1984a</td>
</tr>
<tr>
<td>1143</td>
<td>Mercury</td>
<td>1982</td>
<td>HLQEB</td>
<td>0.12 d</td>
<td>0.4</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1984b</td>
</tr>
<tr>
<td>1149</td>
<td>Worthington Mtn</td>
<td>1985</td>
<td>Airmag</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1985a</td>
</tr>
<tr>
<td>1150</td>
<td>Seaman Range</td>
<td>1985</td>
<td>Airmag</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1985b</td>
</tr>
<tr>
<td>1152</td>
<td>Piper Peak</td>
<td>1985</td>
<td>Airmag</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1985c</td>
</tr>
<tr>
<td>1156</td>
<td>Reveille Range</td>
<td>1985</td>
<td>Airmag</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1985d</td>
</tr>
</tbody>
</table>

C A L I F O R N I A

<table>
<thead>
<tr>
<th>Area</th>
<th>Name</th>
<th>Year flown</th>
<th>Flown by</th>
<th>Elevation (km)</th>
<th>Spacing (km)</th>
<th>Direction</th>
<th>Scale</th>
<th>Gradient removed</th>
<th>Digital</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>613</td>
<td>Darwin</td>
<td>n.a.</td>
<td>n.a.</td>
<td>3.0 b</td>
<td>3.2</td>
<td>E-W</td>
<td>1:333,000</td>
<td>no</td>
<td>no</td>
<td>Mabey, 1961</td>
</tr>
<tr>
<td>617</td>
<td>Death Valley</td>
<td>1957</td>
<td>USGS</td>
<td>2.1 b</td>
<td>1.6</td>
<td>N-S</td>
<td>1:250,000</td>
<td>no</td>
<td>no</td>
<td>USGS, 1970</td>
</tr>
<tr>
<td>32</td>
<td>Antelope</td>
<td>1957</td>
<td>USGS</td>
<td>0.23 d</td>
<td>1.6</td>
<td>SE-NW</td>
<td>1:250,000</td>
<td>no</td>
<td>no</td>
<td>USGS, 1970</td>
</tr>
<tr>
<td>61</td>
<td>Coso Hot Spring</td>
<td>1957</td>
<td>AS</td>
<td>2.1 b</td>
<td>1.6</td>
<td>N-S</td>
<td>1:250,000</td>
<td>no</td>
<td>no</td>
<td>USGS, 1970</td>
</tr>
<tr>
<td>67</td>
<td>Coso Hot Spring</td>
<td>1977</td>
<td>AS</td>
<td>0.23 d</td>
<td>0.4</td>
<td>N-S</td>
<td>1:50,000</td>
<td>n.a.</td>
<td>yes</td>
<td>Fox, 1978</td>
</tr>
<tr>
<td>114</td>
<td>Owens Lake</td>
<td>1981</td>
<td>HLQEB</td>
<td>3.4 b</td>
<td>0.8</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1982a</td>
</tr>
<tr>
<td>116</td>
<td>Sierra Owens</td>
<td>1981</td>
<td>HLQEB</td>
<td>2.7 b</td>
<td>0.8</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1982b</td>
</tr>
<tr>
<td>117</td>
<td>Panamint Dunes</td>
<td>1981</td>
<td>HLQEB</td>
<td>2.1 b</td>
<td>0.8</td>
<td>E-W</td>
<td>1:62,500</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1982c</td>
</tr>
<tr>
<td>124</td>
<td>Eureka Valley</td>
<td>1981</td>
<td>HLQEB</td>
<td>2.1 b</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1983b</td>
</tr>
<tr>
<td>127</td>
<td>Whitefishyo Mtn</td>
<td>1981</td>
<td>HLQEB</td>
<td>4.3 b</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1983c</td>
</tr>
<tr>
<td>128</td>
<td>Kingman-Trona</td>
<td>1981</td>
<td>HLQEB</td>
<td>0.3 d</td>
<td>0.8</td>
<td>E-W</td>
<td>1:250,000</td>
<td>IGRF</td>
<td>yes</td>
<td>USGS, 1983d</td>
</tr>
</tbody>
</table>

1 Modified from Erwin and others, 1980; Hill, 1986
2 Modified from Hill, 1986