c-Axis Twist Bi2Sr2CaCu2O8+8 Josephson Junctions: A New Phase
-Sensitive test of Order Parameter Symmetry

1R.A. Klemm, 2C.T. Rieck, and 3K. Scharnberg

1Argonne National Laboratory, Argonne Illinois 60439
2Fachbereich Physik, Universitat Hamburg, Jungiusstafe 11, D-20355
Hamburg, Germany

The submitted manuscript has been created
by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S.
Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government.

January 1999

University of Miami Conference on High Temperature Superconductivity (HTS99)
Miami, Florida
January 7-13, 1999

This work is supported by the Division of Materials Sciences, Office of Basic Energy
Sciences of DOE, under Contract No. W-31-109-ENG-38, by NATO through
Collaborative Research Grant No. 960102, and by the DFG through the
Graduiertenkolleg “Physik nanostrukturierter Festkorper.”
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
c-Axis Twist Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$
Josephson Junctions:
A New Phase-Sensitive Test of Order Parameter Symmetry1

R. A. Klemm*, C. T. Rieck† and K. Scharnberg†

*Materials Science Division, Argonne National Laboratory
9700 South Cass Ave., Argonne, IL 60439 USA
†Fachbereich Physik, Universität Hamburg
Jungiusstraße 11, D-20955 Hamburg, Germany.

Abstract. Li et al. found that the critical current density J^f_c across atomically clean c-axis twist junctions of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ is the same as that of the constituent single crystal, J^f_s, independent of the twist angle ϕ_0, even at T_c. We investigated theoretically if a $d_{x^2-y^2}$-wave order parameter might twist by mixing in d_{xy} components, but find that such twisting cannot possibly explain the data near to T_c. Hence, the order parameter contains an s-wave component, but not any $d_{x^2-y^2}$-wave component. In addition, the c-axis Josephson tunneling is completely incoherent. We also propose a c-axis junction tricrystal experiment which does not rely upon expensive substrates.

EXPERIMENTAL INTRODUCTION

It has recently become possible to prepare extraordinarily perfect bicrystal Josephson junctions with Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi2212). [1,2] These junctions are prepared by cleaving a very high quality single crystal of Bi2212 in the ab-plane, quickly examining the cleaved parts under a microscope, rotating one part an arbitrary angle ϕ_0 about the c-axis with respect to the other, placing them back together, and fusing them by heating just below the melting point for 30 h. [1,2] A schematic view of the resulting c-axis bicrystal is shown in Fig. 1. By examining these bicrystals with high resolution transmission electron microscopy (HRTEM), electron energy-loss spectroscopy, and energy dispersive x-ray spectroscopy, they were found to be atomically clean over the entire areas studied ($\approx 10^3\mu m^2$). HRTEM pictures

1) Supported by USDOE-BES through Contract No. W-31-109-ENG-38, by NATO through Collaborative Research Grant No. 960102, and by the DFG through the Graduiertenkolleg "Physik nanostrukturierter Festkörper." Send correspondence to klemm@anl.gov.
showed that the periodic lattice distortion was atomically intact on each side of the twist junction. [1]

To each of the 12 bicrystals measured, six electrical leads were attached using Ag epoxy, two on opposite sides of each of the two constituent single crystals, and two across the bicrystal. By applying the current I across the central leads straddling the bicrystal, and a voltage V across two of the other leads, it was possible to measure the I/V characteristics of the c-axis transport across each constituent single crystal, and across the twisted bicrystal junction in the same run. The critical current I_c was easily identified, as V dropped by 5-8 orders of magnitude at a well-defined I value, provided that the temperature T was less than the transition temperature T_c. [1,2] For each bicrystal junction, they measured the critical current $I_c^J(T)$ and the junction area A^J. Similarly, for each constituent single crystal, they measured the critical current $I_c^S(T)$ and the area A^S. Usually, I_c was too large to measure at low T, so comparisons were made at $0.9T_c$, where all 12 samples were measured. [2]

Of the 12 bicrystal junctions, 7 were prepared with $40^\circ \leq \phi_0 \leq 50^\circ$, and one each at 0° and 90°. Although I_c^S and I_c^J at $T = 0.9T_c$ varied from sample to sample, and the critical current densities $J_c^S = I_c^S/A^S$ and J_c^J/A^J also varied from sample to sample, with only one exception (probably due to a sample that had weakly attached leads), the ratio J_c^J/J_c^S of critical current densities was the same (1.00 ± 0.06) for each sample! In a sample with $\phi_0 = 50^\circ$, $J_c^J(T)/J_c^S(T) = 1.0$ over the entire range $10K < T < T_c$, and $I_c(T)/I_c(0)$ fit the Ambegaokar-Baratoff curve. [2,3] As discussed in the following, these results comprise very strong evidence for an s-wave component of the superconducting order parameter (OP) at and below T_c, and cannot be explained within a dominant $d_{x^2-y^2}$-wave scenario.

GROUP THEORY

Although the crystal structure of Bi2212 is orthorhombic, the orthorhombic distortion is different from that of YBa$_2$Cu$_3$O$_{7-\delta}$, with different unit cell lengths a

![Figure 1](image.png)

FIGURE 1. Illustration of a c-axis twist junction with twist angle ϕ_0.
TABLE 1. Singlet superconducting OP eigenfunctions in the angular momentum (ℓ) and lattice (n, m) representations, their group theoretic (GT) notations, and character table for the orthorhombic point group C_{2v} in the form appropriate for Bi2212. σ_b represents the strict bc-mirror plane reflection.

<table>
<thead>
<tr>
<th>GT OP Eigenfunction</th>
<th>E</th>
<th>σ_a</th>
<th>σ_b</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>$s + d_{xy}$</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>$\tilde{a}0 + \sqrt{2} \sum{n=1}^{\infty} \tilde{a}_n \cos[2n(\phi_k - \pi/4)]$</td>
<td>n,m</td>
<td>$\sum_{n,m=0}^{\infty} { \cos(nk_xa) \cos(mk_ya)[\tilde{a}{nm} + \tilde{a}{-mn}]$</td>
<td>$\sin(nk_xa) \sin(mk_ya)[\tilde{c}{nm} + \tilde{c}{-mn}]$</td>
<td>+1</td>
</tr>
<tr>
<td>A2</td>
<td>$d_{x^2-y^2} + g_{xy}(s^2-y^2)$</td>
<td>$\tilde{b}0 + \sqrt{2} \sum{n=1}^{\infty} \tilde{b}_n \sin[2n(\phi_k - \pi/4)]$</td>
<td>n,m</td>
<td>$\sum_{n,m=0}^{\infty} { \cos(nk_xa) \cos(mk_ya)[\tilde{a}{nm} - \tilde{a}{-mn}]$</td>
</tr>
</tbody>
</table>

and b along the diagonals between the Cu-O bond directions in the CuO$_2$ planes. In addition, there is an incommensurate lattice distortion $Q = (0, 0.212, 1)$ along one of these diagonals, the b-axis, which is clearly seen in the HRTEM pictures of the twist junctions. [1] Since Q contains a c-axis component, only the bc-plane is a strict crystallographic mirror plane. [1] Group theory and Bloch’s theorem dictate that the superconducting OP must reflect the crystal symmetry. In Table 1, we have presented the allowable forms of the OP eigenfunctions for Bi2212. [4] We presented both the angular momentum (fixed k_F, variable ϕ_k, with quantum numbers ℓ) and the nearly tetragonal lattice (variable k_x, k_y, with quantum numbers n, m) representations of the OP eigenfunction forms. As indicated, the two OP eigenfunction forms are respectively even and odd with respect to rejections about the bc-plane (the σ_b operation). [5] Thus, in Bi2212, s-wave and $d_{x^2-y^2}$-wave OP components are completely incompatible, and do not mix except possibly below a second (as yet unobserved) thermodynamic phase transition. [4]

LAWRENCE-DONIACH MODEL

Previously, we investigated whether it might be possible to explain the lack of any ϕ_0-dependence of the c-axis critical current from a purely d-wave scenario. [6] We assumed that in the nth layer, the dominant OP component was $d_{x^2-y^2}$, the amplitude A_n of which became non-vanishing below $T_c = T_{ca}$. By choosing the sub-dominant OP component to be d_{xy} with amplitude B_n and bare transition temperature $T_{cb} < T_{ca}$, we considered whether the overall OP could “twist” by mixing $d_{x^2-y^2}$- and d_{xy}-wave components, to accommodate for the physical twist in the Josephson junction between the adjacent layers $n = 1$ and $n = -1$.
There are basically two distinct, relevant energy scales in this problem. One is the relative amount of the two d-wave components. This is determined mainly by the different in the bare T_c values, T_{cA} and T_{cB}. Now, if one assumes that there is only one observable zero-field superconducting phase transition (at $T_i = T_{cA}$), then $T_{cB} << T_{cA}$, and $|B_n| << |A_n|$ for $n \rightarrow \pm \infty$. This difference in T_c values translates into a strong locking of the OP onto the lattice, with the anti-nodes of the $d_{x^2-y^2}$-wave OP component lining up with the Cu-O bond direction on each side of the twist junction. Fluctuations near to T_c manifest in the diverging coherence length along the c-axis direction, allow some OP mixing, but that suppresses $I_c(\phi_0)$ for $\phi_0 \neq 0$, as shown in Figs. 2 and 3.

The second energy scale is the strength of the Josephson coupling η (and η' across the twist junction) of the OP components between adjacent layers. When this coupling is strong, as expected for a rather isotropic layered superconductor, then it is possible to obtain a finite $I_c(45^\circ)$ at $T \approx 0.7T_c$, as pictured in Figs. 2 and 3. However, Bi2212 is extremely anisotropic, and we thus expect $\eta \approx \eta' << 1$. In Fig. 3, we recalculated $I_c(\phi_0, T)$ for this case. Clearly, for $\eta = \eta' = 0.001$, $I_c(45^\circ) \approx 0$. Thus, we conclude that it is impossible to explain the data of Li et al. by assuming a dominant $d_{x^2-y^2}$-wave OP component. [2,4,6]

CONCLUSIONS

We thus conclude that the superconducting OP in Bi2212 is the the group A_1, which contains the s-wave component, but does not contain any purported $d_{x^2-y^2}$-wave OP component.

![Figure 2](image-url)

FIGURE 2. Plot of $I_c(\phi_0)/I_c(0)$ for the case of a dominant $d_{x^2-y^2}$-wave and subdominant d_{x^y}-wave OP, the relative amounts varying with layer index away from the twist junction. [6] The parameters for these curves are $T_{cB}/T_{cA} = 0.2$, $T_{cB}/T_{cA} = 0.1304$, $\epsilon/\delta \alpha = 0.5$, $\delta/\delta \alpha = 0.1$, and the curves for $\eta = \eta' = 1$ are indicated. At $t = 0.7$, curves for $\eta = 1$ and various η' values are indicated.
wave component near to T_c. There are then two possible additional interpretations of these experiments. If there were a substantial amount of coherent interlayer tunneling, then one might be tempted to claim that the OP were entirely isotropic s-wave in form. For free-particle Fermi surfaces, such a scenario is quite possible, as rotated Fermi surfaces on opposite sides of the twist are degenerate. However, Bi2212 is generally thought to have a tight-binding Fermi surface. In this case, inter-twist coherent tunneling is only possible for $\phi_0 \approx 0^\circ, 90^\circ$, for which a finite fraction of the rotated Fermi surfaces are degenerate. Thus coherent tunneling would result in a larger $I_c(\phi_0)$ for $\phi_0 = 0^\circ, 90^\circ$ than for any other ϕ_0 value, contrary to experiment. [2] Hence, we conclude that the interlayer tunneling is entirely incoherent, without any discernible interlayer forward scattering, even between adjacent layers on the same side of the twist junction. [6]

Thus, we can only say that the OP is in the group A_1, which contains the s-wave component. The overall OP eigenfunction could exhibit nodes, but it is even about reflections in the bc-mirror plane, and thus does not contain any amount of the odd $d_{x^2-y^2}$-wave OP component. This conclusion is further supported by new c-axis Josephson junction experiments between Bi2212 and Pb, which showed strong evidence for an s-wave component at low T. [7]

NEW TRICRYSTAL EXPERIMENT PROPOSAL

Since the c-axis junctions are qualitatively superior to the ab-plane thin film junctions, we propose a new tricrystal (or tetracystal) experiment using c-axis junctions, as pictured in Fig. 4. This experiment does not require any expensive

![Graph]

FIGURE 3. Plot of $I_c(\phi_0)/I_c(0)$ for the case considered in [6] of a dominant $d_{x^2-y^2}$-wave and subdominant d_{xy}-wave OP, the relative amounts varying with layer index away from the twist junction. Curves for $\eta = \eta' = 0.1$ and $\eta = \eta' = 0.001$ with $t = T/T_{cA} = 0.99, 0.9, 0.5$ are presented. The other parameters are the same as in Fig. 2.
substrates, and the grain boundaries are intrinsically far superior to those of the planar junctions. [1,8] In addition, since I_c for the c-axis junctions is ordinarily much larger than for the ab-plane due to larger junction areas, it is much easier to satisfy the experimental requirement $I_c L / \Phi_0 >> 1$, where L is the induction of the ring and Φ_0 is the flux quantum. [4]

REFERENCES
