Some ideas on the choice of designs and materials for cooled mirrors

PDF Version Also Available for Download.

Description

This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highest ... continued below

Physical Description

22 p.

Creation Information

Howells, M.R. December 1, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper expresses some views on the fabrication of future synchrotron beam-line optics; more particularly the metallurgical issues in high-quality metal mirrors. A simple mirror with uniform cooling channels is first analyzed theoretically, followed by the cullular-pin-post system with complex coolant flow path. Choice of mirror material is next considered. For the most challenging situations (need for intensive cooling), the present practice is to use nickel-plated glidcop or silicon; for less severe challenges, Si carbide may be used and cooling may be direct or indirect; and for the mildest heat loads, fused silica or ulf are popular. For the highest performance mirrors (extreme heat load), the glidcop developments should be continued perhaps to cellular-pin-post systems. For extreme distortion, Si is indicated and invar offers both improved performance and lower price. For less extreme challenges but still with cooling, Ni-plated metals have the cost advantage and SXA and other Al alloys can be added to glidcop and invar. For mirrors with mild cooling requirements, stainless steel would have many advantages. Once the internal cooling designs are established, they will be seen as more cost-effective and reliable than clamp-on schemes. Where no cooling is needed, Si, Si carbide, and the glasses can be used. For the future, the effect of electroless Ni layers on cooling design need study, and a way to finish nickel that is compatible with multilayers should be developed.

Physical Description

22 p.

Notes

INIS; OSTI as DE96001305

Source

  • Contribution for Halbach Festschrift, Berkeley, CA (United States), 3 Feb 1995

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE96001305
  • Report No.: LBL--36620
  • Report No.: CONF-950261--5
  • Grant Number: AC03-76SF00098
  • Office of Scientific & Technical Information Report Number: 111844
  • Archival Resource Key: ark:/67531/metadc625686

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • December 1, 1994

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 5, 2016, 10:49 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 8

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Howells, M.R. Some ideas on the choice of designs and materials for cooled mirrors, article, December 1, 1994; California. (digital.library.unt.edu/ark:/67531/metadc625686/: accessed August 23, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.