A Spreadsheet-Coupled SOLGAS

A Computerized Thermodynamic Equilibrium Calculation Tool

L. D. Trowbridge
J. M. Leitnaker

Technical Analysis and Operations Division

July 1995

Prepared by the
Oak Ridge K-25 Site
Oak Ridge, Tennessee 37831-7101
managed by
LOCKHEED MARTIN ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
A Spreadsheet-Coupled SOLGAS

A Computerized Thermodynamic Equilibrium Calculation Tool

L. D. Trowbridge
J. M. Leitnaker

Technical Analysis and Operations Division

July 1995

Prepared by the
Oak Ridge K-25 Site
Oak Ridge, Tennessee 37831-7101
managed by
LOCKHEED MARTIN ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400
TABLE OF CONTENTS

FIGURES .. vii

ABSTRACT .. ix

FOREWORD .. xi

I. INTRODUCTION .. 1

A. An Overview ... 1
 1. SOLGAS defined ... 1
 2. Deliberate Goals ... 1
 3. Minimum reading requirements 2
 4. System requirements .. 4

B. Calculations SOLGAS can perform 4
 1. Species and amounts present at equilibrium 4
 2. Species and amounts present at pseudoequilibrium 4
 3. Amount of heat released in a reaction 4
 4. Possible temperature rise 4
 5. Gas pressure or volume change 5
 6. Aid in adjustment of thermodynamic data 5

C. Derivation of program ... 5

D. Computations of the program 6
 1. Mathematical formalism 6
 2. Units and conventions 7
 3. Sources of error ... 8
 4. Restrictions .. 9
 5. Output ... 9

E. Modifications to SOLGAS .. 10
 1. Readability .. 10
 2. Elemental specification eliminated 10
 3. Specifying degrees of freedom: DOF.FOR 10
 4. Alternative thermodynamic calculations 10
 5. Heat calculations .. 10
 6. Automated inputs .. 10
 7. Revised format for data inputs 11
 8. Revised format for data outputs 11
 9. Calculation of species composition 11
 10. Error corrections ... 11
 11. Program portability 11
 12. Error trapping .. 11
 13. Inconsistent array bounds 12
 14. Auxiliary programs to treat output data 12
 15. Changing thermodynamic data "on line." 12
 16. Calculations for systems which include non-ideal solutions ... 12
II. GETTING READY TO USE SOLGAS

A. The thermodynamic data file
1. Reason for the format .. 12
2. Description of the file 13
3. Preparation of the file 16

B. An optional file to vary starting conditions
1. Purpose of the file .. 16
2. Description of the file 16
3. Operation of the file .. 16
4. Preparation of the file 16
5. An example file .. 17

III. USING SOLGAS

A. Introduction .. 17

B. Definitions: our use of names for input and output files .. 17

C. Starting SOLGAS ... 18

D. Quitting SOLGAS: CHOICE 9 19

E. Initial interactive choices
 - CHOICE 1 .. 19
 - CHOICE 2 .. 19

F. Other data following either CHOICE 1 or CHOICE 2 required by SOLGAS 20

G. An automated data entry, CHOICE 12 20

H. Saving calculated data
 - CHOICE 10 ... 20
 - CHOICE 11 ... 21

I. Other choices
 - CHOICE 3 ... 21
 - CHOICE 4 ... 21
 - CHOICE 5 ... 21
 - CHOICE 6 ... 21
 - CHOICE 7 ... 22
 - CHOICE 8 ... 22
 - CHOICE 13 ... 22

J. Limitations .. 26

IV. Automated calculation of adiabatic temperature rise: Use of ADIABAT

A. Description of ADIABAT 22

B. Reason for use .. 22

C. Organization of ADIABAT 23

D. Preparation of the control file 23

E. Preparation to run ADIABAT 24

F. Operation of ADIABAT 24

G. Treatment of output 25

H. Temporary files .. 25

I. A hint on speed .. 25

J. Limitations .. 26
K. Common errors in ADIABAT ... 26
 1. Translation error ... 26
 2. Missing DOS file .. 26
 3. Bad command ... 26
V. Semi-Automated plotting of data: using MASSAGE 26
 A. Reason for program ... 26
 B. Starting MASSAGE ... 27
 C. Output from MASSAGE .. 27

APPENDIX A. General Comments On Appendices 29
APPENDIX B. Elementary Examples .. 29
 I. The relationships among water, ice, and water vapor 29
 II. Input and output of SOLGAS using ice and water as an example 29
 III. Prediction of boiling point of water 34
APPENDIX C. Calculation Of a Simple Phase Diagram: 36
 The Uranium-Flourine System Between UF₄ And UF₆ 36
APPENDIX D. Burning UF₄ In Fluorine. Use Of ADIABAT 39
APPENDIX E. Calculations In The Cl-F-O-H System 43
APPENDIX F. Use Of a Spreadsheet As a Database For SOLGAS Input 46
 I. Advantage of a spreadsheet database 46
 II. Cautions In The Use Of Other Spreadsheets 46
 III. A Lotus 1-2-3 version of LIBRARY 46
APPENDIX G. Calculations of non-ideal solutions 49
 I. Introduction .. 49
 II. Questions and choices for CHOICE 14 53
 III. Calculation of equilibria in the CCl₄-CH₃OH system 53
 IV. Calculations of equilibria in the HF-H₂O System 54
 V. Treatment of the ternary mixture A-B-C 59
APPENDIX H. AQUEOUS SOLUTIONS ... 63
 I. Introduction .. 63
 II. Limitations and caveats applicable to aqueous solutions 63

REFERENCES .. 69
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Organization of the Spreadsheet-Coupled SOLGAS system</td>
<td>3</td>
</tr>
<tr>
<td>2. Example of a SOLGAS data file.</td>
<td>12</td>
</tr>
<tr>
<td>3. An example parameter control file. (To be used in Appendix B.)</td>
<td>16</td>
</tr>
<tr>
<td>4. Screen of interactive choices in SOLGAS</td>
<td>18</td>
</tr>
<tr>
<td>5. Example of a control file to run ADIABAT</td>
<td>23</td>
</tr>
<tr>
<td>B.1 Thermodynamic data of water species. The file name is WATER.DAT</td>
<td>28</td>
</tr>
<tr>
<td>B.2 Output from the input file WATER.DAT</td>
<td>29</td>
</tr>
<tr>
<td>B.3 Data from SOLGAS as obtained by using the file WATER.CTL after choosing CHOICE 12</td>
<td>34</td>
</tr>
<tr>
<td>C.1 Thermodynamic data for uranium fluorides</td>
<td>36</td>
</tr>
<tr>
<td>C.2 A partial phase diagram of the U-F system, calculated from the thermodynamic data of Fig. C.1</td>
<td>37</td>
</tr>
<tr>
<td>C.3 Equilibrium quantities of uranium fluorides between UF₄ and UF₆</td>
<td>38</td>
</tr>
<tr>
<td>D.1 Image of the control file UF₄_BURN.DRV</td>
<td>40</td>
</tr>
<tr>
<td>D.2 Output of the screen during SOLGAS under control file UF₄_BURN.DRV</td>
<td>40</td>
</tr>
<tr>
<td>D.3 Output from ADIABAT, UF₄_BURN.PRN, obtained via SOLGAS</td>
<td>42</td>
</tr>
<tr>
<td>D.4 Image of UF₄_BURN.PRN after importing into Quattro Pro</td>
<td>43</td>
</tr>
<tr>
<td>E.1 Plot of output from SOLGAS via Choice 12 for the F-Cl-O-H system when O₂ is allowed</td>
<td>45</td>
</tr>
<tr>
<td>E.2 Plot of output from SOLGAS via Choice 12 for the F-Cl-O-H system when O₂ is not allowed</td>
<td>46</td>
</tr>
<tr>
<td>F.1 A portion of the library in Lotus 1-2-3</td>
<td>49</td>
</tr>
<tr>
<td>F.2 Opening screen of LIBRARY.WK1.</td>
<td>50</td>
</tr>
<tr>
<td>G.1 Effects of Redlich-Kister parameters on excess free energy</td>
<td>54</td>
</tr>
<tr>
<td>G.2 Screen display when CHOICE [14] is selected</td>
<td>57</td>
</tr>
<tr>
<td>G.3 Pressure-Composition diagram for CCL₄-CH₃OH system at 35°C</td>
<td>58</td>
</tr>
<tr>
<td>G.4 Measured Temperature-Composition of H₂O-HF system at about 1 bar</td>
<td>60</td>
</tr>
<tr>
<td>G.5 Temperature-Composition diagram of H₂O-HF system calculated via SOLGAS</td>
<td>61</td>
</tr>
<tr>
<td>G.6 Constant temperature, constant pressure diagram of the ternary system A-B-C containing a non-ideal ternary mixture</td>
<td>64</td>
</tr>
<tr>
<td>H.1 DATA FILE</td>
<td>68</td>
</tr>
<tr>
<td>H.2 Sample output file</td>
<td>69</td>
</tr>
<tr>
<td>H.3 Second aqueous solution sample problem</td>
<td>71</td>
</tr>
<tr>
<td>H.4 Results of second aqueous solution sample problem</td>
<td>72</td>
</tr>
</tbody>
</table>
ABSTRACT

SOLGAS, an early computer program for calculating equilibrium in a chemical system, has been made more user-friendly, and several "bells and whistles" have been added. The necessity to include elemental species has been eliminated. The input of large numbers of starting conditions has been automated. A revised spreadsheet-based format for entering data, including non-ideal binary and ternary mixtures, simplifies and reduces chances for error. Calculational errors by SOLGAS are flagged, and several programming errors are corrected. Auxiliary programs are available to assemble and partially automate plotting of large amounts of data. Thermodynamic input data can be changed "on line." The program can be operated with or without a co-processor. Copies of the program, suitable for the IBM-PC or compatibles with at least 384 bytes of low RAM, are available from the authors.
FOREWORD

This is our second issuance of SOLGAS Refined. SOLGAS still does all the calculations described in the earlier report. In addition, SOLGAS calculates equilibrium in systems with both binary and ternary non-ideal solutions and can be used with aqueous solutions, including ionic species.

An earlier version of the program, supplied to us by Prof. K. E. Spear, of The Pennsylvania State University, and based on a program written by Gunnar Eriksson, would also calculate systems with non-ideal solutions. However, in a particular case of interests to us, the strongly non-ideal HF-H₂O system, that version would not produce answers. This inability has been corrected by minor changes in the subroutines GASOL, XBER, and FACTOR contained within the program. SOLGAS in its present form still experiences some difficulties when treating very non-ideal systems, although we have improved its performance in this area.

The main purpose of SOLGAS is to describe the equilibrium state of some starting assemblage of the user. Of course it can be used to check phase relationships or even construct phase diagrams, as we have frequently done in this document. Constructing the equilibrium state is still the prime purpose.
I. INTRODUCTION

A. An Overview

1. SOLGAS defined. SOLGAS is a computer program capable of calculating equilibrium quantities of chemical species in multicomponent systems. This program has a long history, and we have recently made modifications to make it more useful to us in our application. We hope it will be useful to others in their applications.

2. Deliberate Goals. This version of SOLGAS is deliberately intended to be used in conjunction with a spreadsheet, although it can also be used independently of one. Spreadsheets are widely available from several software vendors, and most users of SOLGAS will be even more familiar with spreadsheets than with thermodynamic programs such as SOLGAS. The spreadsheet tool can greatly magnify the usefulness of SOLGAS and, consequently, is incorporated into this version as a companion tool rather than as just an addendum.

Use of a spreadsheet will provide several very definite advantages:

(a) Creation of data files from a spreadsheet library is much easier than *ad hoc* creation. While some currently available commercial products contain a data base of thermodynamic data, the serious user will quite likely wish to examine the data for himself or herself, storing the data in a readily available spreadsheet file. Usually a hundred or so chemical species will suffice to describe the current interests of the vast majority of users.

(b) Once satisfactory data are entered in the spreadsheet, chances of error are greatly minimized.

(c) Use of macros, always incorporated as options in commercial spreadsheets, greatly facilitates the creation of files and further use of the calculated data.

(d) Spreadsheet use on calculated results opens great numbers of possible ways to treat and plot the calculated data. The major spreadsheets all contain the ability to plot the columns of data. The number of ways in which calculated data from SOLGAS can be plotted by means of the spreadsheet option is not unlimited but is very large.

Spreadsheets are used in three distinct ways in the present version of SOLGAS. First, they are used as a library from which data for specific species can be easily assembled into a thermodynamic file for insertion into the SOLGAS program. Second, they can provide an easy way of constructing a secondary file to SOLGAS, listing large numbers of input conditions and compositions. Third, they can provide an easy way of treating and reporting large quantities of calculated data from SOLGAS.

All of the processes described can be done on individual data points, rather than on masses of data as implied in the discussion of spreadsheet use. The user will quickly discover that some preliminary calculations, perhaps even one data point at a time, will be highly desirable before the automatic calculation of a large number of points, and this is readily possible. Further, the user can easily make a minor change in a thermodynamic data file (maybe in Microsoft’s EDLIN or EDIT) without reactivating the spreadsheet software. However, for large quantities of data, suitable for plotting or construction of a phase diagram, the spreadsheet offers unique assistance.
This document describes the use of this version of SOLGAS, both in the single point mode and in the spreadsheet mode.

Use of a spreadsheet and its relationship to SOLGAS can perhaps be most easily seen in Fig. 1, SOLGAS System Organization. While SOLGAS is at the heart of the system, spreadsheet use most efficiently organizes the various units into a coherent whole.

In Fig. 1, the data file creation, from the spreadsheet database, is seen to be the starting point of every calculation. (It should be mentioned, perhaps, that the data file could be created directly on a word processor, but with considerably more difficulty.) This data file, with a user-supplied name (e.g., MYFILE.DAT) is then asked for by SOLGAS as its first on-line requirement. This request by SOLGAS is indicated as "User Control," feeding into SOLGAS.

On demand, and coupled with User Control, a Multi-Case Control File (referred to subsequently as CHOICE 12) may be fed into SOLGAS. Additionally, an optional utility program, ADIABAT, which calculates the adiabatic temperature rise for a particular reactive system, may used to control SOLGAS.

After processing the data, SOLGAS feeds the results to a file named by the user (e.g., MYFILE.OUT). These results are presented in the form of one or more tables showing physical conditions, initial and equilibrium quantities of species, etc. Three things may happen to this output: (1) it may be used as is (if viewed, printed, or copied into a document); (2) the results may be read by ADIABAT for use in an iterative process to calculate the adiabatic temperature rise; or (3) a long series of calculations in MYFILE.OUT, for example, might be processed by the utility program MASSAGE to create still another file (e.g., MYFILE.PRN) which would be "spreadsheet importable." MASSAGE will have organized all the myriad results into coherent assemblages which the user can now review for possible plotting or tabular treatment, as desired.

The authors believe the organization described greatly enhances the usefulness of SOLGAS. Further details are provided in the pages that follow.

3. Minimum reading requirements. Our goal in writing this document is to make the use of the computer program SOLGAS as easy and as "user-friendly" as possible. Many of those whom we hope will be interested in this program need only to read the section on preparing files, II.A. 2. and 3., in order to start using SOLGAS. Then, after creating the appropriate files, they will be able to run SOLGAS and perform useful calculations. There are, however, some additional "bells and whistles" that even these users might wish to know about.

The user who just wants to make a series of relatively simple, perhaps "ballpark type" calculations for himself or herself may not want to wade through a lot of wordy descriptions of precise thermodynamic terminology. On the other hand, the program can make calculations as precise as the input data will permit. We have tried to accommodate the user who wants that sort of ability.

Everything else that appears in the rest of Section I can be skipped by most people that we envision might use this document. On the other hand, some students might want reasons for using the program; statements of these appear subsequently. We also owe a debt to the originators of the program we have modified. This acknowledgement is included. Some users may want to know precisely what units and conventions have been included; we have tried to accommodate them.
Fig. 1. Organization of the Spreadsheet-Coupled SOLGAS system.
And also, to those users of previous versions of SOLGAS, we have tried to indicate the changes that are intended to be improvements.

4. System requirements. The program can be operated on an IBM-compatible personal computer having at least 384K bytes of random access memory. The monitor can be any variety. We have tried the program on DOS 3.2, 3.3, 5.0, and 6.0; it works with all these versions. If a co-processor is present, SOLGAS will use it, but its presence is not necessary.

B. Calculations SOLGAS can perform

1. Species and amounts present at equilibrium. SOLGAS can calculate the species and the amounts present in a complicated chemical system at equilibrium. A simple system, such as hydrogen, oxygen, and water, could be solved by any freshman student of physical chemistry. But a system containing five or more elements and a greater number of compounds is a different story. The modern computer, properly programmed, can give the answer rather easily.

 Including a non-ideal solution in an equilibrium problem is an additional complication for the thermodynamicist. SOLGAS can handle such problems if the number of members of the solution is limited to two or three.

 However, the program is only as good as the data input. Thermodynamics is always limited by the ability of the user to supply data in the needed accuracy for species of importance. This is a caution which must always be given to users of thermodynamic calculations.

 Furthermore, while the calculations can give the answer at equilibrium, thermodynamics has no ability to calculate the time necessary to achieve equilibrium. This inability and the need for data are the two serious limitations of thermodynamics.

2. Species and amounts present at pseudoequilibrium. Some reactions which are possible on a thermodynamic basis are not observed in practice, or are not observed on the time scale of the observation. For example, hydrogen can fuse to form helium, and helium can fuse to form carbon thermodynamically. But these nuclear reactions do not occur on earth at a measurable rate, and one does not include the possibility in studies of chemical reactions. Likewise, there are chemical reactions of interest in which the formation of the stable form of a species or compound is not possible within the time frame during which the reaction is being studied. By leaving the unobservable species out of the list of possible end products, one can study a pseudoequilibrium. An example of this type of calculation is given in Appendix E.

3. Amount of heat released in a reaction. In almost every chemical reaction, there will be a release or absorption of heat. SOLGAS calculates and reports the amount of this heat.

 SOLGAS treats non-ideal solutions by equations to be described in section I.D.1. Our present treatment assumes all the terms of the equation describing the excess free energy of a solution contribute to the heat of mixing except the term in temperature. This assumption is clearly incorrect for all cases, but data to distinguish the contribution for the heat of solution from the entropy of solution are almost always absent for solutions of interest.

4. Possible temperature rise. As presently written, SOLGAS needs two temperatures from the user. The starting temperature is the one at which, it is imagined, the particular starting
components of the reaction are fed into the imagined reactor and is fixed in the input data file. The reaction temperature is the temperature at which the reactor is held. (In the programming, these are referred to as T_INIT and T_FINAL.) SOLGAS calculates the heat necessary to change the input materials (the reactants) to the final temperature, calling this the preheat. It then calculates the heat of reaction at the final temperature. If the sum of the preheat and the heat of reaction at the final temperature were zero, then the final temperature would be the maximum temperature change that could, in principle, be achieved under the other restrictions on the system (See Appendix D). Note that interaction with the environment would prevent this temperature from actually being achieved, and only an idealized situation has been calculated.

5. **Gas pressure or volume change.** SOLGAS performs its calculations assuming either constant pressure or constant volume. (The default is a one bar constant pressure calculation.) When one of these two is selected as constant, the other is calculated assuming ideal gas behavior. Only the gas phase volume is considered (i.e., not the volume of condensed phases). Further, SOLGAS does not "know" that the temperature might rise because of the heat of reaction, so the pressure it will calculate, in a constant volume process, for example, will be for a constant temperature process at the user-specified final temperature.

6. **Aid in adjustment of thermodynamic data.** Frequently thermodynamic data, particularly those from different sources, do not correctly predict well-known physical phenomena. For example, thermodynamic data for water should predict that it will have a vapor pressure of one atm. at 373.15 K. That is, one may be very certain that water boils at 100°C. If the data do not predict this, then some portion of the data is wrong and should be changed if this type of calculation is important.

In the case of solutions, the program is set up so that the user can vary the constants describing a solution until the output describes known phase relations to the user's satisfaction. (see CHOICE 14 in Section III. I.) This variation is done "on line" so that the user can see the results of changing one or more variables describing the solution. The constants used are printed in the output of each case as a permanent record.

Unfortunately, it is not always clear which data should be changed. For example, heat of formation, entropy, and heat capacity data on both liquid and gaseous water are required in order to calculate the vapor pressure of liquid water. The user must use judgement and, perhaps, auxiliary data to decide how to make the desired calculation. Usually one tries to establish the data which are most reliable by referring to calculations in other systems and adjust the least reliable data to bring the calculation into agreement with observation. However, it must be recognized that this process is a judgement call, rather than an experimental observation.

Perhaps these last two paragraphs will emphasize to the user that obtaining data from diverse sources—and even from singular sources—must be done carefully, recognizing one can only be sure that observable quantities will be correctly predicted by trying the appropriate calculation (See Sec. III.I).

C. Derivation of program

The heart of the calculational program is a minimization technique for finding the least Gibbs free energy of a multicomponent system which was developed by Eriksson\(^1\) and programmed for computer calculation. Spear and Besmann\(^4\) obtained a copy of the original program and made
it available for computer calculation. Spear and Liau at the Pennsylvania State University further
developed both the older program and also one which incorporated the treatment of non-ideal
binary solutions for use on the IBM-compatible PC and made both versions available to the
present authors.

D. Computations of the program

1. Mathematical formalism. The actual calculation is as follows: \(\Delta H^0_{298} \) and \(S^0_{298} \), the
enthalpy of formation of a species in its standard reference state and the entropy of the species
in its standard reference state, respectively, are inputs, as are \(C^0 \), heat capacity values as a function
of temperature for all species of interest. The present program calculates for each species

\[
"HT" = [\Delta H^0_{298} + (H_T - H_{298})]
\]

and also

\[
S^0_T = S^0_{298} + (S^0_T - S^0_{298})
\]

for each species. It then calculates, again for each species, a dimensionless quantity, \(G/(RT) \), via

\[
G/(RT) = "HT"/(RT) - S^0_T/R.
\]

It is this quantity, which is clearly not the standard free energy of formation of the material, that
SOLGAS uses to minimize the total free energy of the system in this version. This treatment
eliminates the need to define an elemental standard state for each element involved in the
calculation of equilibrium. However, it cannot eliminate the need to include a source of each
element in the calculation. Eriksson formulated the problem by use of Lagrangian multipliers and
set up a matrix to solve for these. He solved the matrix by use of Gaussian elimination augmented
by partial pivoting. The derived matrix is a robust procedure from which we have never detected
any errors except where two rows are identical, a case noted by Eriksson.

The treatment for non-ideal solutions is based on the Redlich-Kister equations, which, in turn,
are based on a treatment of solutions carefully described by Darken and Gurry in their text. The
basic equation is

\[
\alpha_i = \frac{\ln \gamma_i}{(1 - N_i)^2}
\]

where \(\alpha_i \) is a defined quantity for species "i," \(\gamma_i \) is the activity coefficient for species "i," and \(N_i \)
is the mole fraction of species "i." For a binary solution if \(\alpha_i \) is constant, then it is shown that

\[
\alpha_1 = \alpha_2 = \alpha.
\]

Redlich and Kister used an equation which was "almost" orthogonal to describe a constant \(\alpha \):

\[
Q = x(1-x)[B+C(1-2x)+D(1-2x)^2].
\]
If one assumes a "regular solution," in terms described by Darken and Gurry (i.e., \(C=D=0 \) in Eqn. 6), multiplying the "Q" of Eqn. (6) by \(R*T \), where \(R \) is the gas constant and \(T \) is the temperature in kelvin, gives an excess free energy term for the solution in question. If the solution is "regular," in the sense used by Darken and Gurry, then the heat of mixing is given by

\[
\Delta H_{\text{mix}} = R*T*\alpha*x*(1-x).
\]

(7)

Eriksson has replaced the term "B" of Eqn. (6) by

\[
B = \left[R_0 - R_j/R*T \right],
\]

(8)

and in the present treatment we have made the assumption that the \(R_j \) term is an entropy term and the rest of the terms exactly give the heat of mixing, as described by Darken and Gurry. A similar assumption is made for ternary solutions, for which the \(C \) or \(D \) terms are implicitly taken to be zero.

Clearly the present treatment of solutions is only an approximation. Even those few systems for which the total excess free energy of the solution obeys the regular solution model do not, as a consequence, have heats of mixing which are given so simply as implied. The formalism is used, however, because of the paucity of data for solutions. If, in the millennium, data for heats and entropies of solutions become readily available a change in the formalism describing solutions will be in order.

2. Units and conventions. All input into the program is in SI units. Temperatures are in Kelvin. Compositions are in moles or gram-atoms. Enthalpies are the standard enthalpies of formation, \(\Delta H^0_p \), at 298.15 K, of the material, and the units are joules-mol\(^{-1}\). By convention, the enthalpy of formation of an element in its standard reference state would be identically zero at all temperatures. The entropies (not entropy changes) of the several materials are the values at 298.15 K and the units are joules-mol\(^{-1}\)-deg\(^{-1}\). The enthalpies are to be given as a function of temperature, if possible, and the units are the same as those of the entropies. More than one equation might be necessary to describe the heat capacity of a substance, in which case a temperature and enthalpy of transition, in SI units, will need to be inserted. It will be obvious that the heat capacity equation(s) should be valid in a range including both the initial and final temperature of the system. The value of the gas constant, \(R \), is taken as 8.3145107 J-deg\(^{-1}\)-mol\(^{-1}\), the value recommended by CODATA\(^6\), which leads to a value of 0.083145107 l-bar-deg\(^{-1}\)-mol\(^{-1}\). (The molar volume at this implied standard state pressure of 1 bar (.1 MPa) is 22.7111 at 273.15 K). Note that the \(R \) value is slightly inconsistent with the NBS\(^7\) value, and both are slightly inconsistent with the JANAF\(^8\) tables.). The boiling point of a substance is taken as the temperature, in Kelvin, at which the partial pressure of the substance is 0.101325 MPa, exactly.

"Species" will be referred to in two ways: as the various chemical substances to be examined as potential products during the minimization calculation, and as substances being used as starting materials. To differentiate between these two uses, we will always refer to the latter materials as "input species," which are a subset of "species."

There are three specific temperatures with which the user will come in contact. The first is the reference temperature for the thermodynamic data, 298.15 K, which is embedded into both the program and the thermodynamic data, and is unlikely to ever change. The other two temperatures are the starting temperature, T_INIT in the programming, and the reaction temperature, T_FINAL.
in the programming. The starting (or initial) temperature is input with the rest of the
thermodynamic data, and is the temperature at which one imagines the input species are fed into
a reaction chamber. The reaction (or final) temperature is the temperature at which reaction takes
place, which may be either higher or lower than the initial temperature.

3. Sources of error. Errors in the input data will obviously result in errors in the output. By
using a standard data source formulation, such as the spreadsheet, one can eliminate an always
troubling source of error: inadvertent inclusion of transposed or miscopied numbers. SOLGAS can
have other problems in obtaining a correct solution, and it is these that we intend to address in
this section.

There are three indications to the user that a correct answer has not been obtained: (1) The
program prints on the screen "Equilibrium has not been achieved"; (2) a message that there is a
violation of mass balance; and (3) an underflow error is announced. Occasionally, SOLGAS
announces that "the small Y values may not be correct." Usually, the latter is of small concern.
We discuss the source of errors and some corrective measures in the following text.

SOLGAS can be prevented from reaching an answer, as Eriksson originally noted, if a
singular matrix results from the input data. For example, when a simple system is treated in which
two constituents react completely to form a compound (i.e., the initial species mix happened to
continue the exact stoichiometric quantities needed to form a stable product), such a case occurs.
To eliminate this possibility SOLGAS, after being unable to reach an answer, adds a very small,
variable amount of each species in the problem.

In some cases, the failure to arrive at an answer can be overcome by using the option that
allows the user to estimate the amounts of the equilibrium species (One must have, of course,
knowledge from previous calculations or chemical intuition, perhaps from some results which
bracket the troublesome calculation). See CHOICE 3.

SOLGAS needs a gas phase to start its calculations. If the problem does not supply a gas
phase a small amount of an inert gas must be added, e.g., 0.001 moles Ar. However, during
calculation an unstable gas phase can disappear.

In some cases, SOLGAS reaches an apparent solution and prints an answer which does not
agree with calculations very near to it in composition; sometimes this apparent solution is clearly
wrong. During intermediate calculations of a particular system, SOLGAS will set the composition
of some species identically equal to zero if the calculated composition of that species gets low
enough. It appears that in certain cases, SOLGAS has done this at too early a stage in the solution.
Once a composition has been set to zero, SOLGAS apparently does not go back to re-examine
its potential for appearance. Thus, the system being examined is no longer the system entered
through the input, but rather a reduced subset of the system. This problem originates in a section
of code which we have not modified, and often manifests itself in the form of a potential floating
point underflow error in an exponential calculation. The calculation is not attempted, but instead
the exponential is set to zero and a flag is set which adds a message to the output table that such
a condition was detected, warning the user to carefully check the output in that particular run.
The mass balance error, mentioned previously, has been flagged by summing the mass of each element in the final mix of products and comparing this result with the initial input. The user reads, "Warning: Mass balance not preserved in this run. Examine results carefully!" The reader also receives notice of the extent of non-balance.

We have not detected any errors which are not flagged by the messages listed above. Avoiding these errors can sometimes be done, after the fact, by changing the initial composition somewhat and by manually entering estimates for the results (i.e., using menu option "2" rather than relying on the computer's estimate) or in some cases, changing the order of species putting the least important species last in the list of species to examine. Sometimes the desired answer can only be obtained by interpolating between satisfactorily computed answers. Fortunately, these occasions have constituted less than 1% of the calculations performed in our experience.

4. Restrictions. Only ten elements are allowed as input to SOLGAS, and only 99 species can be considered as potential products. (The number of components will always be equal or less than the number of elements.) Furthermore, only 20 input species can be considered. The maximum number of mixtures is 20, the minimum number of gaseous species is one and the maximum number of phases is 31. If the user attempts to violate one of these restrictions in the species data file, SOLGAS stops and prints a message indicating the nature of the violation. The user must then adjust his data file in order to use SOLGAS. One limit that isn’t checked but is imposed on the data input, is that the maximum length of any single line in the input file is 500 characters.

In most cases we have added protection for inadvertent wrong entries which would cause the program to abort. Such cases might be entering a letter instead of a number or a decimal number instead of an integer.

If the user wants a material considered as a component of the equilibrium mixture, there must be a source of the elemental constituents of that material. The converse is not true; however, a material for which there is no source in the input materials can remain in the species list but will not have a contribution in the output list, though this may lead to computational problems in a few cases.

The program assumes that the solids occupy no volume. In specifying a constant volume, one can therefore consider only the volume of the gas of interest.

5. Output. SOLGAS reports in tabular form the species considered in the system, the initial and final amounts of each, and the equilibrium (final) pressure of each gaseous species. It also reports the heat required to raise the input species from a stated starting temperature to the stated reaction temperature, the heat of reaction, and the algebraic sum of the two heat values. An example of the output table is given in Appendix B.II.B. If condensed phases were available, but not present in the final product, SOLGAS may list the free energy change necessary to make the next most stable species appear. This can be useful in adjusting thermodynamic data. The names of input and output files are also recorded.

The report for an individual run is clear, convenient, and useful. However, for significant numbers of runs, a different tabulation would be more convenient. A more convenient tabulation is described in Section V.
E. Modifications to SOLGAS

SOLGAS as documented here is considerably altered from the version we originally obtained. A brief description of changes we have made is stated in the following text.

1. Readability. We have changed the interactive portion of SOLGAS so that the user responds to more familiar terms. For example, rather than offering to change "NPKT" or "B," we use "number of points to calculate," and "quantities of starting materials." Thus it is hoped that the casual user will find the program easier to use.

2. Elemental specification eliminated. In the formulation of the original SOLGAS, it was necessary to enter elemental species explicitly in their reference state. In many of the reactions we have studied, the concentration of elemental species in the final product was negligible which sometimes led to computational difficulties. Furthermore, in some cases, it is desirable to actually exclude the elements from consideration. These cases arise when, kinetically, the elemental state is not accessible during the time of interest. One can study a reaction's thermodynamic pseudoequilibrium by eliminating the elemental state of one or more elements from consideration (See Appendix E). We eliminated the need for specifying the elements.

3. Specifying degrees of freedom: DOF.FOR. The original SOLGAS used the elements as a way of calculating the number of thermodynamic degrees of freedom of a system, a quantity necessary to calculate thermodynamic equilibrium. Almost invisible to the user is a subroutine in SOLGAS, DOF.FOR, which calculates the number of components in the system. For example, one might be studying the hydration of CaCl₂ in which one would have CaCl₂, along with the hydrated solid, liquid, and gaseous water. Obviously, there would be four elements, but at ambient temperatures, only two components. The user only observes the result of this calculation in those cases in which the number of components is smaller than the number of elements. In such a case, the screen displays the result of the calculation which gives the assignment of species' components. Other than this screen display, the user has no knowledge of the change in component assignment—and maybe no need to know.

4. Alternative thermodynamic calculations. We have eliminated the ability to specify the species' thermodynamic data in the form of ΔG^0 as a function of temperature, ΔH^0_{298}, which we use, can be derived from ΔG^0, S^0_{298}, also used, is virtually always available or can be easily estimated. Earlier SOLGAS versions also had the ability to calculate equilibrium by means of enthalpies of formation and free energy functions. This feature is not available in the present version.

5. Heat calculations. The option to eliminate the heat calculations is no longer available; one can always ignore the results.

6. Automated inputs. The present version of SOLGAS permits one to easily enter a large number of input species quantities, along with variations in temperature and either pressure or volume, without laboriously entering these "by hand." This choice has value particularly in those ranges of a system in which significant changes of an equilibrium species occur with relative small changes in input conditions. The procedure, described later in detail, is to construct a second input data file in a spreadsheet in which one specifies varying starting conditions for the desired series of SOLGAS runs. (See Section III.G.)
7. Revised format for data inputs. A significant change has been made in the format by which data is entered. All data for one species is entered on a single line. These data entries include a name, chemical composition, and thermodynamic data, such as enthalpies, entropies, heat capacities and any phase transitions. The impetus for this change is four fold: (a) Gathering all the information about a compound into one entity (e.g., a line or record) makes the file more readable, (b) subsequent modification of the data file is straight forward, (c) putting data about species into a library would be facilitated in this way, and, (d) once a species is correctly entered into a library file, errors in copying or transposing should be largely eliminated. (See Section II.A.2 and Appendix F.)

8. Revised format for data outputs. In the first edition of SOLGAS Revised we did not print out activities of either gases or solutions. Since both the gases and solutions were treated as ideal there was no reason to do so. In the new formulation, however, the activity of the species in solution becomes of interest, and the activities are printed out. Since the activity of each species must be the same in each phase, one might immediately wonder why this is not true in the present formulation. The reason is, of course, that one is using a different reference state for the condensed solution than for the gaseous state. The reference state for the gaseous species is the pure gaseous material at 1 bar; the reference state for a solution species is that species extrapolated to 100 mole%.

9. Calculation of species composition. Species composition is now entered in a more natural way. Instead of specifying that water has two gr-atoms of H and one of O, one writes the formula H2O, and SOLGAS calculates the appropriate composition. Such things as CCl4 (naturally one must use the letter "el" rather than the numeral "one" to indicate carbon tetrachloride) and Fe0.9450 (being careful to use the letter "oh" rather than a zero for oxygen) seem more easily used.

10. Error corrections. A number of errors in SOLGAS have been corrected. One was a procedure which incorrectly calculated the entropy of transition for a phase, with the result that any data set containing a species with a phase transition would yield an incorrect answer above the transition temperature of that species. A second was that, as originally programmed, phase transitions were all assumed to be above 298.15 K. Such transitions may now be at any temperature.

11. Program portability. Some modifications have been made to allow compilation on other computers. New COMMON storage areas were added to preserve local variables’ values between calls to subroutines to be sure of a constant behavior when compiling on different computers. Ryan/McFarland® FORTRAN and Microsoft® FORTRAN did save these values, although the R/M manual says they will not be saved. A time-honored "trick" by which text is read into numeric arrays was removed. This necessitated creation of separate COMMON for the new CHARACTER variables, since characters cannot be mixed with numerics in COMMON. SOLGAS has been compiled using several compilers: R/M FORTRAN and MS FORTRAN for IBM-compatible PC’s, and VAX/VMS® FORTRAN on VAX 8600. A few modifications were necessary to get the PC version operational on the VAX, but identical results were obtained on all systems.

12. Error trapping. File existence checks were added to trap some common errors related to use of duplicate or misspelled file names. A large number of protections were built into the data entry routine against various types of invalid data files.
13. Inconsistent array bounds. These were rendered consistent, and a limit on the number of starting materials (of 20) was imposed. Earlier, various arrays allowed 10, 20, and 99 starting materials, and some out-of-bounds data storage occurred as a result.

14. Auxiliary programs to treat output data. A program named "MASSAGE" has been written to convert a file containing many output data tables from SOLGAS and rearrange them into a spreadsheet-compatible file which can be sorted, pruned, selected, and plotted. This program eliminates a large amount of laborious hand tabulations with the attendant chance for error (See Section V). Another program, ADIABAT, calculates the adiabatic temperature rise when species are reacted (See Section IV).

15. Changing thermodynamic data "on line." In order to adjust thermodynamic data to make these agree with physical observations, an option has been added to make the adjustment while in SOLGAS, rather than exiting the program, changing the file, and re-entering SOLGAS. When such a change is made the output file will reflect the change and its magnitude.

16. Calculations for systems which include non-ideal solutions. The ability to make calculations for systems which include both binary and ternary non-ideal solutions is available. Almost all solutions are, in fact, non-ideal, although in a limited number of cases an ideal solution approximation is satisfactory. This additional feature is still an approximation because of the paucity of experimental data describing heats and entropies of solution. Nevertheless, it is felt that the addition is valuable, since one can use phase diagram information as a basis for making guesses about the excess free energy of these solutions. The derived heat from this treatment, because of the formalism, is less than satisfactory—but is all that is presently available.

II. GETTING READY TO USE SOLGAS

A. The thermodynamic data file

1. Reason for the format. To run SOLGAS, one must first prepare a file containing the thermodynamic data for the several species under consideration in the problem at hand. By far the easiest way to create this file is by using the spreadsheet library. However, this can be done with any text editor or word processor that can create a file in ASCII (i.e., plain text) form. The original SOLGAS data input was on 80-column data cards. Use of SOLGAS on the IBM-compatible computer required an input file for each run, and the file paralleled the input cards for the "mainframe computer" originally used. Each separate problem required a data file and, although often an old file could be changed somewhat to produce a new file, a considerable amount of manual bookkeeping was still required of the user, all with the attendant chance of error. Because of the restricted length of the input card, names and composition indications were on one card, enthalpies and entropies were on another, heat capacities yet on another, and all had to be arranged in a specified order for the computer.

The input file that was required on data cards, and then translated into an ASCII file for the personal computer, has been simplified. Because the requirement of a fixed line length has been lifted, one can rather easily put all the data relating to one compound on a single line. Furthermore, the computer can be used to compute compositions from the usual chemical formula of a compound and do other bookkeeping chores formerly required of the user. One is limited, as mentioned previously, to 500 characters in a single line, though it is rare, in our experience,
to need such a long line. Not all word processors allow this length of line. Both EDLIN (the early DOS line editor), and EDIT (the newer DOS editor), only allow 256 characters on a line. WordPerfect 4.0 allows 250 characters. WordPerfect 5.1 formats its line length based on inches; 16.5 in. is the maximum length of line, and with 10 "x’s" per inch, one can have approximately 165 characters on a line. Word Star can handle more than 500. Most spreadsheets could readily handle 500 characters, although one would pay a severe penalty in space used to save a moderately long entity with widths in the vicinity of 500 characters.

2. Description of the file. An example file is shown in Fig. 2, and will be used as a means of explaining the general requirements. Such a file can most easily be prepared by means of a spreadsheet but can also be prepared in any text editor which allows saving in an ASCII file, as will be shown subsequently. Incidentally, some spreadsheets/text editors may "do you a favor" when they save your file. Quattro Pro, Lotus 1-2-3, and EXCEL are covered in this document; if your file isn't read correctly from your spreadsheet or text editor, check to see if the file produced actually corresponds to the description in this section. For example, we found some programs inserted tab characters where we had expected spaces. Word processing programs save data in a "document mode" unusable by SOLGAS; for example WordPerfect adds over 300 characters to the front of a file giving information about the file. But SOLGAS cannot use this information and its occurrence can actually "lock up" the computer. One can save, however, as a text file from WordPerfect or other work processors, generally by saving in "text," "ascii," or "non-document" mode, or "printing to file."

Fig. 2. Example of a SOLGAS data file.

```
TITLE Test SOLGAS data file
This is the sort of thing that one might use to investigate the reaction of chlorine with fluorine.

T=298.15

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*G</td>
<td>Ar</td>
<td>Ar</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>*G</td>
<td>Cl₂</td>
<td>Cl₂</td>
<td>0</td>
<td>223</td>
</tr>
<tr>
<td>G</td>
<td>Cl</td>
<td>Cl</td>
<td>121302</td>
<td>165</td>
</tr>
<tr>
<td>*G</td>
<td>F₂</td>
<td>F₂</td>
<td>0</td>
<td>203</td>
</tr>
<tr>
<td>G</td>
<td>CIF</td>
<td>CIF</td>
<td>-50292</td>
<td>218</td>
</tr>
<tr>
<td>G</td>
<td>ClF₃</td>
<td>ClF₃</td>
<td>-158866</td>
<td>282</td>
</tr>
<tr>
<td>G</td>
<td>F</td>
<td>F</td>
<td>79390</td>
<td>159</td>
</tr>
</tbody>
</table>
```

i. Title line

"TITLE" — without the quotation marks — must appear at the beginning of the first line; the next 80 characters on that line will appear as the title in SOLGAS output files. Any number of remarks lines (which will be ignored by SOLGAS), may follow the title line.

ii. Starting temperature line

"T=" or "T =" must begin the next "working" line; the value following it is the starting temperature of the mix of input species in kelvin. (For the convenience of EXCEL users, "T,=" is also accepted.) This is the T_INIT mentioned in Section I.B.4.
iii. Data lines

All the remaining lines are data for the chemical species to be considered in the thermodynamics problem. The data for each species appears on a single, perhaps very long, line. The format of the line is somewhat free-form, with data fields separated by a comma or space (nothing else is valid as a delimiter). The data need not be lined up in columns as shown in the example of Fig. 1, although that sort of organization may make the data set more readable to the user.

The "*' as the first character of the line indicates that this species is a starting material, i.e., an input species. Lack of an asterisk indicates that the species is not part of the starting mix, but will be considered in the calculation as a possible product. All starting materials are also, of course, possible products.

A "G," "M," or "P" must be the next letter encountered (after the asterisk, if it is present). However, blank spaces are allowed between the asterisk and the "G," "M," or "P." These letters designate the material as "Gas," "Mixture," (which could be a liquid or solid solution) or "Pure" condensed phase material, either liquid or solid. If a mixture is present, you must designate which mixture you are referring to by following the "M" with a one or two digit number. (Only 20 mixtures are allowed.) "M1," "M1," "M 1," "M01" are all allowed formats in the data file.

Species must appear in the following order (which is the same as in previous versions of SOLGAS):

1. all gases.
2. all mixtures, in the mixture order, that is, all species in "M1" before any in "M2," and so forth.
3. pure substances.

The next field is the species name. Only ten characters of a name will be retained by SOLGAS, although one could use a longer name if desired. Obviously, spaces or commas would not be allowed in the name. In Fig. 1, we have unimaginatively used chemical formulae for the names, but this is not necessary.

Next is the formula field, which requires a bit more explanation. SOLGAS uses the formula to calculate the composition much as a chemist normally would. Thus, the formula must be entered in a simple format, without spaces or commas. The format is: element-subscript-element-subscript... etc. "Element" means the one or two-letter chemical symbol for that element. The first letter must be capitalized; the second, if any, must be lower case. For example, for chlorine, one must use "Cl," not "CL" or "cl." Subscripts must be positive numbers, and decimal points are allowed, but signs and an exponential format are not. If the subscript would be "1," it may be omitted. An element must appear no more than once in a formula, and parentheses or other structure-designating additions are not allowed. Some valid formulas are: H2O, C3F8, and Ca.8Mg0.2CO3; some invalid ones are CF3CF2CF3 or Ca0.9995Mg5E-4CO3. There is a limit of 30 characters to describe the formula.

The next two fields are, in order, ΔH^0, and S^0. The ΔH^0 value is the standard enthalpy of formation of the species, in J-mol$^{-1}$, at 298.15 K. The S^0 value is the entropy of the species, in J-mol$^{-1}$-deg$^{-1}$, at 298.15 K in its standard, reference state.
One next inputs constants of a heat capacity equation for the species, again in J-mol⁻¹-deg⁻¹. Up to five parameters, a, b, c, d, and e, in order, may be used, according to the C_p equation

$$C_p = a + bT + cT^2 + dT^2 + eT^3.$$ \hfill (9)

For species of interest at high temperatures, the data most often available are enthalpies in tabular form. It may be necessary for the user to fit the data into an appropriate equation, and differentiate with respect to T (K) to produce an appropriate C_p equation (since C_p is defined as the derivative of enthalpy with respect to temperature at constant pressure). A value for "a" must be provided, but other parameters will be read as "zero" if not explicitly entered. For example, a more usual multi-term equation would be

$$C_p = a + bT + dT^2.$$ \hfill (10)

If a value for "d" were entered in the file, a "zero" for the parameter "c" would be required, but nothing would be required for "e." In using Eqn. 9, we are following the previous versions of SOLGAS.

Multiple C_p equations, up to six, are allowed. These may be needed to fit different regions, either because of a phase change or simply as a device to splice equations for different regions to obtain a better fit to data. If more than one equation is needed, an additional set of numbers is needed after the then-required "e" variable in the previous set. The values required for the second and subsequent sets are shown in the correct order:

1. the enthalpy of transition, in J-mol⁻¹, at the
2. temperature of transition, in kelvin, and
3. C_p for the new region, consisting of a required "a" parameter, followed by up to the four additional parameters of Eqn. 9.

Instead of using multiple C_p equations, one could use multiple species. In many cases, one would have to derive an appropriate ΔH^0_r at 298.15 K (by integrating $C_p dT$) and an S^0 at 298.15 K (by integrating $[C_p/T]dT$).

End of Data line:

Finally, a ";" indicates that all data is complete on that line. Following the ";" one may enter any desired remarks, which will be ignored by SOLGAS. For example, one might enter notes on the source of data for that species.

Most plausible violations of the above formats will result in an error message indicating the type of format error and listing the offending data line. Data lines are read until an end of file is encountered. A common data file format error is the inadvertent inclusion of extra blank lines at the end of the file. The limits imposed by SOLGAS as to the maximum number of elements (10), mixtures (20), and species (99), the minimum number of gases (1), and also the limitation on the number of characters in a line, 500, apply.
3. Preparation of the file. At least three methods may be used to create the data file described in II.A.2; by use of a spreadsheet, from a database package, or in a word processing package.

When constructing a file, remember that SOLGAS looks for either a comma or a space as a delimiter between fields, and looks for the ";" as an indication that the data for that species is complete. The particular method of construction is immaterial, but the spreadsheet method is by far the easiest.

B. An optional file to vary starting conditions

1. Purpose of the file. In some cases, a user will wish to compute changes in output as a function of some input parameter (e.g., temperature; pressure; and starting composition). (The reader may wish to postpone reading this section until after actually using SOLGAS, or at least until after having read Section III, "Using SOLGAS.") Particularly in complicated cases, a plot of such data is much more immediately revealing than columns of numbers. Such plots can be readily generated from columns of numbers in spreadsheets. Two features have been designed to facilitate such plots. The first feature is the additional input file to vary starting conditions, which is described here. The second is a computer program (appropriately called MASSAGE) which "massages" lengthy output produced by SOLGAS into a form which is easily accepted by a spreadsheet. In the spreadsheet, the data can be pruned and selected to show the results to best advantage. (See Section V.)

2. Description of the file. The file is simply an ASCII file in which each row of data, with the exception of the first line, defines the starting conditions for a single SOLGAS calculation. The first number on a data line is the final temperature of the run. The second number contains the (constant) system pressure, entered in bar, or the (constant) gas volume, entered as a negative number in liters. The remaining numbers contain the quantities, in moles, of the starting species. This quantity data must appear in the same order as the input species are listed in the associated SOLGAS input data file. For example, the Fig. 2 data file would require the order to be "Ar," "Cl₂," "F₂."

3. Operation of the file. When the user selects CHOICE 12 (the option in the interactive portion of SOLGAS which allows the use of such a file), SOLGAS asks for the name of the control file, then reads lines from the control file one at a time, solves the problem for the temperature and starting quantities specified, and automatically saves the output table to the previously designated output file. Control data lines are read and processed until an end-of-file is reached, at which time the program returns to the main menu in SOLGAS. The successive output tables may be scanned individually (outside or SOLGAS) or treated with the program called MASSAGE. (See Section V.)

4. Preparation of the file. The file can be prepared in two different ways: either (a) in a spreadsheet or (b) in a word processor or text editor. Most frequently, only one or two of the input parameters will be varied during a run, although there is no necessity for this. Filling a column of constant values is particularly easy in a spreadsheet, as is incrementing a value by a constant amount. Hence, there is a predilection on the part of the authors for preparing these control or parameter files via a spreadsheet. One then saves the file in an ASCII format, either space or comma delimited.
5. **An example file.** Fig. 3 is a parameter control file which will be used in Appendix B. The first line is a convenient title. If this line is omitted SOLGAS merely discards the first data set, treating it as a title. The first column, as mentioned above, is the temperature; a quick glance reveals that this is the only parameter changing. The second column is the pressure in bar, and the user will recall that 1.01325 bar is defined as 1 atm. The associated data file (see Appendix B, Fig. B.1) contains two input species, Ar and H$_2$O(l), in that order. The next column, thus, contains the moles of Ar input in each problem. The last column contains the moles of water.

![Fig. 3. An example parameter control file. (To be used in Appendix B.)](image)

This is an example file, boiling water

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Pressure (bar)</th>
<th>Moles Ar</th>
<th>Moles H$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>373.0</td>
<td>1.013</td>
<td>1E-6</td>
<td>1.0</td>
</tr>
<tr>
<td>373.2</td>
<td>1.013</td>
<td>1E-6</td>
<td>1.0</td>
</tr>
<tr>
<td>373.4</td>
<td>1.013</td>
<td>1E-6</td>
<td>1.0</td>
</tr>
<tr>
<td>373.6</td>
<td>1.013</td>
<td>1E-6</td>
<td>1.0</td>
</tr>
<tr>
<td>373.8</td>
<td>1.013</td>
<td>1E-6</td>
<td>1.0</td>
</tr>
<tr>
<td>374.0</td>
<td>1.013</td>
<td>1E-6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

III. USING SOLGAS

A. Introduction

SOLGAS is designed to be "user friendly," and, to the extent that the authors have succeeded in accomplishing this goal, the user won't need much of this section. This section will take the reader through the questions asked by SOLGAS and will give suggested answers along with the consequences of choices that might be made. In addition, a number of comments will be made about the information to be displayed on the screen.

B. Definitions: our use of names for input and output files.

The authors have used specific extensions to file names to indicate what the file is designed for. Since the program operates on the IBM-compatible personal computer, the rules of naming will be familiar to nearly all PC users - no more than eight alphanumeric characters in the file name and no more than three in the extension (see the disk operating system instructions for invalid characters in the file name). For the thermodynamic data input file, we will always use the extension .DAT. MY_FILE.DAT is used here as an example. The extension .CTL is used for the parameter control file, e.g., MY_FILE.CTL. (This type of file was described in Section II. B.)

Early in any session with SOLGAS, the user is asked for the name of an output file; for such files we will use the extension .OUT, e.g., MY_FILE.OUT. (In some cases, when a variety of case-by-case variations are going to be studied, the authors have used a numerical extension for the output file, e.g., MY_FILE.001, ...002, etc.)

After using the parameter control file, MY_FILE.CTL, one would often wish to use MASSAGE to rearrange SOLGAS's results (which would be in MY_FILE.OUT) in order to make
it readable to a spreadsheet. For such files, we will use the extension ".PRN." MASSAGE uses MY_FILE.OUT and generates another file, MY_FILE.PRN, which the user can then import into a spreadsheet.

There is no SOLGAS requirement that the extensions mentioned here must be used. They are used by the authors both to tie together a set of related files and also to use as examples for the reader. As mentioned previously, the names of the input and output files are recorded in the output file.

C. Starting SOLGAS.

SOLGAS is an executable, compiled file whose extension is .EXE. It runs under DOS. Hence, it is only necessary to type "SOLGAS" in either upper or lower case, followed by <RTN>, in order to start the program. (The symbol <RTN> means to press the "return" or "enter" key). The authors customarily put SOLGAS.EXE and all the data and parameter files into one directory which makes interaction somewhat easier. However, this is not necessary. Paths to other disks or directories are acceptable usage for all file names.

After typing "SOLGAS" and <RTN>, the user is asked for the name of the input file. If one were following the definitions in Section III.B, one would type "MY_FILE.DAT." The next query is for an output file name, which could be "MY_FILE.OUT."

SOLGAS reads the input file, MY_FILE.DAT, and reports what it found (number of species, elements, mixtures, etc.). Occasionally, SOLGAS will find that there are fewer "linearly independent" components than elements in the input file. For example, if one were studying the boiling of water (using only liquid and gaseous water, as will be done in Appendix B), there are obviously only two components in the system, although there are three elements. In this case, SOLGAS "tells" the rest of its program that there is one component, Ar, and another component in the problem whose formula is H2O. By "independent," we mean components whose quantities can be independently varied. In the case of a system containing only phases of H2O, one cannot independently vary oxygen and hydrogen quantities.

Next, SOLGAS tells the user the starting temperature, which was included in the input data file, and then asks for the reaction temperature. A discussion of these two temperatures was given in Section I.D.2. After the reaction temperature is input, SOLGAS presents the user with a screen of interactive choices, Fig. 4. These choices are discussed in Sections D through H.
Fig. 4. Screen of interactive choices in SOLGAS

1. Computer selects a starting estimate.
2. Manually select a starting estimate.
3. Use previously calculated y() values as starting estimate. A toggle.
4. Change quantities of starting material only.
5. Recalculate with same data, pts., and quantities.
6. Change the reaction temperature.
7. Change value of fixed pressure or volume.
8. Change to a new system.
9. Exit program.
10. Save the last calculated result.
11. Save the last series of results.
12. Read run data from a parameter file.
13. Change thermodynamic data of a species.

Select an Option:

D. Quitting SOLGAS: CHOICE 9

CHOICE 9, "Exit Program," is always available at the screen of Fig. 4. Nothing further is saved from the calculations, and the computer returns to the directory from which SOLGAS was entered. In this, CHOICE 9 is similar to using <CTRL>+<Break> or <CTRL>+C.

E. Initial interactive choices

The first time the screen of 14 choices is presented, the user can reasonably make only one of the choices: CHOICE 1, CHOICE 2, CHOICE 3, CHOICE 12, or CHOICE 14. The other choices typically assume that some calculation has been made and something else is desired. The program does not "bomb" if another choice is made, but doing so seems pointless. CHOICE 3, CHOICE 12, and CHOICE 14 are special cases that are described below. Choices 1 and 2 are described as follows:

CHOICE 1. This is the choice most often made. After some questions are answered by the user, SOLGAS selects a starting estimate of the equilibrium quantities of products. The calculation proceeds satisfactorily most frequently.

CHOICE 2. "Manually select a starting estimate" indicates that, in addition to starting quantities (See Section F below), the user will be asked for an estimate of the amounts of all species in the final result. Occasionally, a user-provided initial estimate of the products may prove helpful in obtaining a solution. SOLGAS uses an iterative numeric process involving Gaussian elimination and partial pivoting to solve a matrix. Because of the way starting estimates are made in CHOICE 1, the program can fail to converge to a solution. In rare cases, it may converge to a fallacious solution. (See discussion of "Sources of error" in Section 1.D.3.) For example, on a few occasions during a series of runs that slowly scanned a range of compositions of initial reactants, the authors observed a run in the middle of the series that gave results that deviated significantly from those around it. In the strange run, many species' compositions had been set identically equal
to zero, and reactions with strongly negatively free energy changes among remaining species didn’t occur. Re-running these cases using manual input of plausible final values for each constituent yielded sensible results consistent with other runs in the series. The user must experiment to obtain a desirable result. A fuller description is given in Section I in CHOICE 3.

F. Other data following either CHOICE 1 or CHOICE 2 required by SOLGAS.

SOLGAS first asks how many points one wishes to calculate. Any positive number less than 100 is valid (By the term "point," we mean a single SOLGAS calculation). The user is then informed of the identity of the input species and is asked to indicate how the composition of the various species vary. The choices are "constant," "varies irregularly," and "varies by constant increment." For example, if four points were to be calculated, species A and B might have constant values, e.g., 1 mole; species C could vary irregularly, e.g., 0.5, 0.5, 1.0 and 1.0 moles; and species D could have a regularly varying composition, e.g., beginning at 0.25 moles with regular increases of .25 moles, ending at 1.00 moles for the final point.

If CHOICE 2 had been selected, after asking for information relating the amounts of the various input species, SOLGAS then goes on to ask for a single estimate of the final equilibrium quantity of each of the species to be considered in the problem. SOLGAS does the first calculation with this information, goes to the second calculation, and so forth without coming back for any subsequent estimate. Data from the first calculation remain in memory, and SOLGAS has the advantage of this information. However, if the user is doing a number of calculations in troublesome areas of the system, a different estimate for each point may well be warranted. In this case, the user should respond with "1" when asked how many points are to be calculated. CHOICE 3 in Section I may provide additional useful information.

G. An automated data entry, CHOICE 12.

"Read run data from a parameter file" assumes SOLGAS is to select initial estimates of the output (similar to CHOICE 1), and the program takes each set of starting condition information line by line from a previously created run control file (Section II.B), calculates the results of each, and stores them in the output file (e.g., MY_FILE.OUT). The number of data lines that can be read and processed is limited only by the capacity of the storage device being used. Processing (or "massaging") of this mass of output data was mentioned briefly in Sec. II.B and will be described in more detail in Section V.

H. Saving calculated data.

SOLGAS does not automatically save the results of calculations, except in the case of CHOICE 12. Two choices are available to save data which differ in operation. These are described below.

CHOICE 10, "Save the last calculated results," will write the output results of the just completed single calculation to the output file, e.g., MY_FILE.OUT. CHOICE 10 saves data that is in Random Access Memory (RAM). If one had just calculated four points and only then chose CHOICE 10, only the last of the four points would be saved to MY_FILE.OUT because these data are still in memory. One could add the results of another calculation to the same output file if CHOICE 10 is chosen each time a calculation is completed without starting a new calculational problem.
CHOICE 11, "Save the last series of results," saves results of multiple-point calculations. The number of results that SOLGAS saves with this option is determined by the number by which one answered the request "Input No. of points to be calculated...," for that series of calculations will then be re-run and saved. Thus, if a user knew ahead of time he was going to run four cases, it could be more efficient to indicate that fact for the number of points and then choose CHOICE 11 at the end. If running additional cases depends on the results of the present case, then CHOICE 10 might be more efficient.

I. Other choices

CHOICE 3. "Use previously calc'd Y() values as starting estimate. A toggle." This option is designed for regions in which SOLGAS has difficulty reaching an answer and is to be used in conjunction with CHOICE 12. That is, one could use CHOICE 2 in a step-by-step process to get the same result as with CHOICE 3 plus CHOICE 12, but the process would be much more difficult.

As the "A toggle" in the menu implies, CHOICE 3 must be toggled off once it is turned on and the user is finished with it. Once CHOICE 3 is activated a line is printed both on the screen and in the output file announcing the activation. In general, the user will next choose CHOICE 12, but one could choose CHOICE 1.

CHOICE 3 "knows" that SOLGAS already has the thermodynamic data for the problem under consideration and is ready for the compositional data entry. It assumes that the first compositional input data set entry after CHOICE 3 is activated is one which SOLGAS can solve without difficulty. It further assumes that all the next compositional data set entries will each use the immediately preceding calculated answers as input to start that particular calculation. Naturally, the user must follow a regular path with the calculational process rather than feeding in data at random in order for the procedure to be helpful.

It may help the user to know that the authors' experience is that CHOICE 3 is useful in the region near a maximum boiling point of a binary mixture. In our own case the system was the HF-water mixture as detailed in APPENDIX G.IV. Other cases, such as HCl-water, investigated by John Dalton back in 1832, are known. It is supposed that systems with minimum boiling mixtures, of which about 400 are listed in the International Critical Tables, will also need the assistance of CHOICE 3 near this singular point in order to reach a satisfactory answer.

CHOICE 4. "Change quantities of starting materials only" tells SOLGAS to calculate the same number of points as its most recent series, but to change the initial quantities of input species. If CHOICE 4 is selected without telling SOLGAS how many points to calculate in a previous choice, the user is told there are zero points to calculate, and SOLGAS cannot calculate an equilibrium even if data are entered.

CHOICE 5. "Recalculate with the same data, points, and quantities" is an opportunity to repeat the immediate past calculation(s). This may be useful if one has changed temperature, pressure, or volume, or even to simply see the top of a table that has scrolled off the screen.

CHOICE 6. "Change the reaction temperature" allows the final temperature to be changed.
CHOICE 7. "Change the value of the fixed pressure or volume" is a choice that could be made before Choices 1 or 2. SOLGAS initially assumes that calculations will be run at a constant pressure of 1 bar. Hence, one might initially wish to set the pressure at half a bar. If one wished to "operate" at a fixed volume, e.g., at 2.5 liters, one would enter –2.5; the negative sign tells the program that 2.5 is a volume in liters. Incidentally, it is probably worthwhile to note again that the volume of condensed phases is assumed to be zero by SOLGAS. At moderate pressures, this causes no problem but, at high pressures, one might be misled.

CHOICE 8. "Change to a new system" essentially sends SOLGAS back to the beginning to get a new data file and a new output file. All the initial question are then asked; it is as if SOLGAS were started anew.

CHOICE 13. "Change thermodynamic data of a species" is, as suggested, an internal method of changing one or two data points for \(\Delta H_{298} \) or \(S_{298} \) or the "a" value (only) of \(C_p \) in cases where the user wishes to bring thermodynamic data into agreement with physical observation (See Appendix B for a case in which one might wish to change data). If a large number of changes were to be made, it might be easier to reconstitute the entire input file, MY_FILE.DAT. In order for the user to keep track of data that have been changed SOLGAS "remembers" and prints the value of \(\Delta H_{298} \), \(S_{298} \), and the "a" value of \(C_p \) for each species of the system, both on the screen and in the saved output file.

CHOICE 14. "Input non-ideal solution constants" suggests what must be done. After this choice, SOLGAS asks if each solution is to be treated as ideal or non-ideal. Possible answers are "0" for ideal, "1" for binary non-ideal, and "2" for ternary non-ideal. If the answer is "1" the user is asked for four parameters, \(R_0 \), \(R_n \), \(R_l \), and \(R_c \). The effect of these parameters is to determine the excess free energy of a solution in a way described in Appendix G. If the answer is "2" the user is asked for two parameters, \(R_0 \) and \(R_n \) for each binary subset of the ternary mixture.

The user can try all these choices. SOLGAS has never "locked up" the computer by means of any of these choices in past experience, and trying the choices may be more effective than reading about them.

IV. Automated calculation of adiabatic temperature rise: Use of ADIABAT.

A. Description of ADIABAT.

ADIABAT.EXE is a utility program which repeatedly runs SOLGAS in order to find the adiabatic temperature change of a system. SOLGAS is designed to solve for equilibrium under isothermal conditions; in some cases, it is desirable to solve for equilibrium at adiabatic conditions (i.e., without gain or loss of energy). ADIABAT was written to fill this need.

B. Reason for use.

When reactive species are mixed, release of heat in an approximately closed system could cause the temperature to rise in a dangerous way. Even if the system is quite small, the energy that could be released in the form of heat can have important kinetic implications. Even if "only" studying the efficiency of the combustion of fuel, the ability to calculate the limiting heat available can be useful.
Usually, ADIABAT does more quickly what the user can readily do by hand. As one sees how ADIABAT is organized in the next section, one will see that the process can be accomplished a run at a time by the user; ADIABAT is just more efficient.

C. Organization of ADIABAT

ADIABAT makes use of the fact that SOLGAS calculates three important heat quantities. First, it calculates the heat necessary to change the potential reactants of a system from the starting (or initial) temperature to the reaction (or final) temperature, called the preheat. It then calculates the heat of reaction at the reaction temperature. Finally, it algebraically combines the two calculated heats to get a final, total heat.

Now if the final total heat is zero, in principle, the reaction temperature is the highest (or, conceivably, lowest) temperature that can be reached by the reactants making up the system at the specified conditions.

Thus, in order to provide the adiabatic final temperature, ADIABAT varies the final temperature, seeking a temperature at which the total heat is within 0.02 J of zero. Of course, the difference between the final and the initial temperatures is the temperature change.

D. Preparation of the control file

ADIABAT is the controlling program which runs SOLGAS in order to accomplish its mission. It is set up to run at a user-specified constant pressure or volume and also arranged to allow input of multiple points, since most frequently one will want the information over a range of compositions.

The structure of the control file for ADIABAT is similar to that for the CHOICE 12 control file, with the addition of one more parameter. To accomplish its task, ADIABAT varies one input variable, either the reaction temperature or the starting quantity of a single species.

Each line of the control file defines a single calculation. The entries on each line are as follows:

Control variable. The first parameter must be an integer. If its value is zero, that indicates that temperature will be varied until the "Total Heat=0" point is found. If its value is 1,2,3, etc., that indicates that starting species number 1,2,3... (as determined by the order in which it is listed in the associated data file) will be varied until the net heat is zero.

Temperature. This will be the reaction temperature for the run. (If temperature is to be varied this will be the starting point for the search.)

Pressure or Volume. A positive number indicates a run at constant pressure, a negative number at constant volume (in liters).

Quantities. The remaining values are the starting quantities, in moles, of the input species in the associated SOLGAS data file. If one of these parameters is to be varied, the number entered will simply be the starting point for the search.
Quantities. The remaining values are the starting quantities, in moles, of the input species in the associated SOLGAS data file. If one of these parameters is to be varied, the number entered will simply be the starting point for the search.

Fig. 5. Example of a control file to run ADIABAT

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1200</td>
<td>1.013</td>
<td>.5400</td>
<td>.4600</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
<td>-44.0</td>
<td>.5400</td>
<td>.4600</td>
</tr>
</tbody>
</table>

In the example in Fig. 5, the first line in the control file "tells" ADIABAT (which tells SOLGAS) that the reaction temperature is 1200 K, the pressure is 1.013 bar, and the compositions are 0.5400 moles for species A, 0.4600 moles for species B, and 1×10^{-7} moles for species C (Note that SOLGAS is going to get the starting temperature and thermodynamic data from MY_FILE.DAT.). The "1" at the beginning of the file tells ADIABAT that the first starting material, species A with 0.5400 moles, is the parameter to vary until the total heat at a temperature of 1200 K and a pressure of 1.013 bar is zero. Note that the order of the species A, insert line B, and C must be identical to the specification and order of MY_FILE.DAT.

The second line of the control file in Fig. 5 has some differences. The reaction temperature is only 1000 K, the volume is fixed at 44 liters, the compositions are 0.5400, 0.4600, and 1.43 and the "0" at the beginning indicates that the temperature is to be varied until the total heat is zero.

The control file can be prepared via any mechanism which will save the file in an ASCII format and is either space or tab delimited (comma delimited will not work).

E. Preparation to run ADIABAT

ADIABAT assumes that the following files are in the default directory: COMMAND.COM (which must be copied into the default directory from the DOS root directory), SOLGAS.EXE, ADIABAT.EXE, the control file described in Section C, and the data file (MY_FILE.DAT as used here). Data file names can incorporate directory paths, and thus be located elsewhere.

F. Operation of ADIABAT

To start the program, one merely types ADIABAT followed by <RTN>, and one is asked for the thermodynamic data file, the control file and a results file. ADIABAT will proceed to run SOLGAS as directed by the information in these files.

ADIABAT has a convenient feature. If one names the files using specific name extensions the typing of additional file names is eliminated. If one would type

ADIABAT D:\THERMO\MY_FILE <RTN>

ADIABAT would assume all the files were named MY_FILE, and the extensions were .DAT for the thermodynamic data file, .DRV for the ADIABAT control file, and .PRN for the output file. In the above example, ADIABAT would assume that the files were located in drive D: in subdirectory \THERMO.
G. Treatment of output

Output from ADIABAT is an ASCII file, assumed here to be named MY_FILE.PRN. Extension .PRN is useful in importing the data into a spreadsheet, since this extension will cause its file name to be listed as a choice during the importation process in both Lotus 123 and Quattro Pro.

The output is given, line by line, as:

Run No., Temperature, Pressure, Volume, Total heat, species...

where each species datum consists of "name" and "starting quantity." ADIABAT will append a message "UNCONVERGED" to results lines which exceeded the iteration limit, and will list two output results from such runs (which represent its most recent attempts to estimate the solution desired). It should be noted that ADIABAT finds starting conditions which lead to a "net heat = 0" condition; if the user would like to know the final products of such conditions, it would be necessary to rerun SOLGAS at the conditions determined by ADIABAT.

For the peace of mind of the user, ADIABAT will display a status line telling which runs it has completed and the final values of a few control variables. When done with all runs, it will type "Finished" and return to DOS.

As implied above, the results can be most easily assembled in a spreadsheet where they can be plotted as desired.

H. Temporary files

Two temporary files are used, which should nearly always be invisible to the user. These are "$temp.mac" and "$temp.out." The first is a "macro" which contains the simulated keystrokes that SOLGAS needs to process each point. The second is the output of a single SOLGAS run. These files are repeatedly created and deleted in the default directory as the run progresses and will be erased when the run is finished.

I. A hint on speed

During its operation, ADIABAT continually loads and runs SOLGAS. After it makes the first run, it varies the control variable and makes another run. The results of these two variables are used to decide how to make the next run in order to begin to converge on the final result (nearly zero total heat). Because it does the extrapolation or interpolation within ADIABAT, it has to load SOLGAS for each run. Hence, a limiting factor is the speed with which SOLGAS can be loaded, the file examined, and the data file accessed.

The speed of the process can be greatly enhanced by placing all heavily accessed working files (COMMAND.COM, SOLGAS.EXE, MY_FILE.DAT) on a high speed or RAM drive and making that the default drive. An increase of a factor of five has been obtained by using a RAM drive versus a removable hard disk. It seems plausible that a good-sized disk cache will speed up the process more, though we have not tested this.
J. Limitations

ADIABAT's mode of interpolation can be a weakness. Once it has bracketed the answer, ADIABAT uses a newtonian method of iterative interpolation to seek the answer. It is limited to 20 iterations. In some problems, a small change in starting composition, for example, can lead to drastic changes to equilibrium compositions (e.g., at a phase change). In these cases, ADIABAT can fail to converge. However, it prints both sets of current calculations along with a warning saying that the system is "unconverged." Sometimes the results, though unconverged, provide useful information.

K. Common errors in ADIABAT

The following errors have occurred often enough to the authors that they are worth mentioning for the potential user:

1. Translation error.

Immediately after the user responds with the name of the SOLGAS data file, a message indicating "translation error" appears, accompanying an image of the line in the SOLGAS data file containing the materials' starting temperature. This message often means that ADIABAT "sees" an extra line in the data file beyond the final data line. The solution is to use a text editor such as EDLIN or EDIT (in DOS), or any word processor which can import and export data in an ASCII mode. One then deletes the offending line. (Using <RTN> in a word processing program after the final bit of data has been sufficient in the authors’ experience).

A couple of versions of this have been observed:

i. DOS error #:2 running "del $$temp.out"
ii. DOS error #:2 running "SOLGAS.EXE < $$temp.mac >nul"

The reason for the errors is that SOLGAS cannot find COMMAND.COM. The solution is to copy COMMAND.COM to the default directory and try again.

3. Bad command.

DOS spells out "Bad command or filename," which indicates either SOLGAS.EXE or COMMAND.COM is not immediately available. The solution is to copy the missing file to the default directory and restart the program.

V. Semi-Automated plotting of data: using MASSAGE

A. Reason for program

Extracting data manually from a large number of SOLGAS output tables can be a laborious task, one which readily lends itself to performance by a computer. Automation of the extraction process is the reason for the existence of MASSAGE. It takes any amount of SOLGAS output (in a single file) and organizes the data into comma-delimited fields, each related to a single species' composition, temperature, heat, or volume.
The advantage of such organization is that the data can be easily imported into a spreadsheet where it can be further organized, pruned, and plotted with relative ease. A relatively simple problem might have 18 separate pieces of information in the output table. Thus, there are 18×17 or 306 possible and different plots one might desire from a series of runs. Thus, the computer removes an additional time-consuming portion of data processing.

B. Starting MASSAGE

MASSAGE.EXE is a compiled data "post-processor" which is run on the IBM-compatible PC by typing MASSAGE, followed by <RTN>. The user is asked for the file name (the name of a file containing tabular output from SOLGAS). In the example discussed so far, the user responds "MY_FILE.OUT," for this is the multiple-run output file, quite likely generated by CHOICE 12.

The user is then asked for an output file and, again using these conventions, responds MY_FILE.PRN.

C. Output from MASSAGE

MASSAGE is really designed to be used with a spreadsheet, and the following comments must be viewed in that light. One can import MY_FILE.PRN into any of several spreadsheets or graphics packages, recognizing that the file is comma delimited.

MASSAGE's product, e.g., MY_FILE.PRN, will contain one header line, consisting of the following column labels:

"ID," "T(K)," "P (bar)," "V (l)," "Pre-Heat (kJ)," "Rxn, Heat," "Net Heat (kJ)," "Species ID," "N (initial)," "N (equilib)," and "P (bar)."

Under the column headers are the data with a row for each species in each run. Runs that failed to find a solution will be skipped. The "ID" label is an arbitrary number assigned to a run in the order the data are encountered in MY_FILE.OUT. The number itself has no significance, except that it can be useful in straightening out missorted output lines.

The ID, T (temperature), P (pressure), V (volume), and heat entries are common to all lines from a given run. After these data elements, the species name is followed by species-specific information: initial and final quantities (in moles); for gases, partial pressure in bar; for condensed mixtures, mole fraction.
APPENDICES

APPENDIX A. General Comments On Appendices

Because the explanations of SOLGAS may not be as clear to the readers as to the authors, some examples have been included in this report. Lacking the ability to show the computer screen as we describe the interactive responses, we have chosen to list both the screen output of SOLGAS and the responses typed when asked for them. To distinguish between the output of SOLGAS and the responses typed in, we have put the responses in **BOLD CAPS**.

In addition, comments have been added on the right sides of the pages. To distinguish these comments from SOLGAS output or **USER RESPONSE**, we have put braces ({})) around each comment.

A brief, descriptive heading is given for each example.

APPENDIX B. Elementary Examples

I. The relationships among water, ice, and water vapor.

Thermodynamic data and phase diagrams are two facets of the description of a material system. Ideally, the thermodynamic data should enable one to construct a phase diagram of a given system, and water serves as an example in this Appendix.

Water, saturated with air and at 1 atm pressure (0.101325 MPa exactly), freezes at 0°C or 273.15 K. By definition of the thermodynamic temperature scale, water, ice, and water vapor are in equilibrium at 273.16 K. Ideally, thermodynamic data associated with these three phases should predict the triple point at 273.16 K. They should also predict a boiling point at 373.15 K, as required by the definition of the Celsius scale.

This appendix has the advantage not only of showing how SOLGAS operates in a simple case, it also shows the relationship between thermodynamic data and familiar phase relations.

II. Input and output of SOLGAS using ice and water as an example.

A. Sources of data

Fig. B.1 gives the thermodynamic data file from which the calculations in this section and in Section B.III were calculated (See Section II.A.2 for a description of the meanings of the values and symbols). One sees that the gaseous data and the data on liquid water were taken from the JANAF tables, while the data on solid ice were taken from the *Handbook of Chemistry and Physics* published by the CRC Press.
B. This section contains only output from use of the file WATER.DAT. (Fig. B.2)

C. General comments about calculated results from file

Output from this calculation, as given in Section B, is worth examining. After responding to questions from SOLGAS, the user gets some summary information about the input file on the screen. Perhaps the most interesting is the determination by SOLGAS that, despite the fact that there are three elements in the system being examined, there are only two components. Component #1 is made of pure Ar, and Component #2 is made up of two gr.-atoms of H and one gr.-atoms of O. This illustrates that SOLGAS is basing its calculation of thermodynamic equilibrium on components in the system, and not on particular chemical substances. Frequently, the two are identical.

Following the screen output in Section B farther, one notes that at 273.10 K, SOLGAS calculates that condensed H₂O is solid, while at 273.20 K, condensed water is liquid. This calculation obviously agrees with our definition of the ice point lying at 273.15 K. One should note that SOLGAS would be unable to calculate the exact freezing point, but can only approach it almost as closely as desired. Note that SOLGAS in its calculation should approach the triple point in this case: 273.16 K. It would not "know" that the phases were saturated with air—to get the ice point—unless additional information were provided.

The gaseous pressure of water is given by SOLGAS as 0.006136 bar at 273.2, which is 0.05°C. One interpolates the pressure of water over liquid water at 273.2 from the CRC handbook as 4.596 mm Hg, or 0.061275 bar, less than 0.1% difference. One sees that the heat of fusion is within 7 cal per mole (30 joules per mole) of the published value in the CRC handbook.

The agreement is exceedingly good, and it was accomplished without having to adjust any of the basic data. While the heat of formation of solid water at 298.15 is probably not possible to measure, one can calculate it readily. The heat of formation and entropy of liquid water was taken from the JANAF tables, as noted in the library section of these Appendixes. The heat capacity of liquid water in the vicinity of room temperature is tabulated in these tables and was fitted to an equation. The heat capacity data of both Dickinson and Osborne and Giauque and Stout for ice were fitted earlier to a linear equation. The heat of fusion of water is a well known value, and was taken from the CRC handbook, 6008 J/mol.

A useful calculation made by SOLGAS is sandwiched between the report of the amounts of the several species (initially and at equilibrium) and the report of the various calculated heats. We refer to the section beginning "Species number"; SOLGAS here informs the user that an unstable species was only unstable by so many joules. The user could easily use this information to adjust heats or entropies of a species to force stability, if desired.
[1] Computer selects a starting estimate

[5] Recalc. with same data, pts. & quantities

Select an Option: 5

T = 273.200 K
P = 1.000 bar
V = 0.229D-04 liters

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Qty (moles)</th>
<th>Final Qty (moles)</th>
<th>Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>0.10000D-05</td>
<td>0.10000D-05</td>
<td>0.99387D+00</td>
</tr>
<tr>
<td>H2O(g)</td>
<td>0.00000D+00</td>
<td>0.61707D-08</td>
<td>0.61329D-02</td>
</tr>
<tr>
<td>H2O(l)</td>
<td>0.10000D+01</td>
<td>0.10000D+01</td>
<td></td>
</tr>
<tr>
<td>H2O(s)</td>
<td>0.00000D+00</td>
<td>0.00000D+00</td>
<td></td>
</tr>
</tbody>
</table>

Species number 4 (H2O(s)) would be considered in the equilibrium set of phases if its free energy of formation were 1.9 J/Mole more negative.

Pre-heat = -1.912 kJ
Heat of reaction = 0.000 kJ
Total heat = -1.912 kJ

Paused -- Push RETURN to continue (user entered a carriage return)

[1] Computer selects a starting estimate

[10] Save the last calculated result

Select an Option: 10 (save these results)

[1] Computer selects a starting estimate

[9] Exit program

Select an Option: 9 (Exit the program...)

C:\>

(... and back in DOS)

Fig. B.2. Output from the input file WATER.DAT.
C:\> SOLGAS

**** SOLGAS Version 2.44 ****

Input File Name: WATER.DAT
Output File Name: WATER.OUT

Demo File for melting ice and boiling water

2 – No. of Condensed Phases of Fixed Composition
1 – No. of Mixtures
2 – No. of Species in Mixture # 1
3 – No. of Elements
2 – No. of Linearly Independent Components

Converting to Linearly Independent Components per

Comp.

Elem. Ar H O
Comp. # 1 1.000 0.000 0.000
Comp. # 2 0.000 2.000 1.000

(SOLGAS has determined)

Initial Temperature of Starting Materials - 298.15 K

Input the Reaction Temperature (K): 273.1

[1] Computer selects a starting estimate
[2] Manually select a starting estimate
[3] Change No. of pts. to calculate & quantities of starting materials
[4] Change quantities of starting material only
[5] Recalc. with same data, pts. & quantities
[6] Change the reaction temperature
[7] Change value of fixed pressure or volume
[8] Change to a new system
[9] Exit program
[10] Save the last calculated result
[11] Save the last series of results
[12] Read run data from a parameter file

Select an Option: 1

Input No. of points to be calculated (<100), allowing for variation in quantities of starting materials: 1

Raw material species in sequence are:
Ar
H2O(1)

(continued on next page)
N varies irregularly
N is the quantity
N is constant
N is in moles
N varies by a constant increment

Input option for Ar : 1
Input option for H2O(l) : 1
Option for Ar is 1; Input 1 value(s) for 1 point(s): 1E-6
Option for H2O(l) is 1; Input 1 value(s) for 1 point(s): 1

\[\begin{align*}
T & = 273.100 \text{ K} \\
F & = 1.000 \text{ bar} \\
V & = 0.228D-04 \text{ liters}
\end{align*} \]

{result is displayed on (the screen.)

<table>
<thead>
<tr>
<th>Initial Qty</th>
<th>Final Qty</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(moles)</td>
<td>(moles)</td>
<td>(bar)</td>
</tr>
<tr>
<td>Ar</td>
<td>0.10000D-05</td>
<td>0.10000D-05</td>
</tr>
<tr>
<td>H2O(g)</td>
<td>0.00000D+00</td>
<td>0.61251D-08</td>
</tr>
<tr>
<td>H2O(l)</td>
<td>0.10000D+01</td>
<td>0.00000D+00</td>
</tr>
<tr>
<td>H2O(s)</td>
<td>0.00000D+00</td>
<td>0.10000D+01</td>
</tr>
</tbody>
</table>

Species number 3 (H2O(1)) would be considered in the equilibrium set of phases if its free energy of formation were 0.2 J/Mole more negative

Pre-heat = -1.920 kJ
Heat of reaction = -5.978 kJ
Total heat = -7.898 kJ

Paused -- Push RETURN to continue

[1] Computer selects a starting estimate
[10] Save the last calculated result

Select an Option: 10

[6] Change the reaction temperature

Select an Option: 6

Input the Reaction Temperature (K): 273.2

(continued on next page)
III. Prediction of boiling point of water

A. Use of "parameter file" to calculate the boiling point of water

As mentioned previously, the thermodynamic data used for the calculation were those shown in Fig. B.1. In order to make the calculation, a parameter file, WATER.CTL, was generated; the contents of this file were shown in Fig. 2 of the main section (III.G) of this report. CHOICE 12 was utilized, and the parameter control file, WATER.CTL, varied the temperature from 373.000 to 374.000.

B. Data obtained by use of the parameter file WATER.CTL, shown in Fig. B.3, through CHOICE 12 of SOLGAS.

C. Comments on agreement of calculated boiling point with definition of water’s boiling point.

The data of Section B. show that a gaseous pressure of 1.013 bar is not reached until the temperature is 373.8 K, more than 0.6 degrees above the defined boiling point. This fact may well be surprising to the reader, for it is inconsistent with known phase relations. The Celsius temperature scale is defined based on the 100 degree difference between the freezing point of water and its boiling point, equilibrium with vapor at a vapor pressure of 1 atm. or 1.013 bar. Keep in mind that the data for water in the gaseous state refer to the ideal gas, whereas the boiling point of water is defined based on real gas.

One could check to see that the heat of vaporization calculated via SOLGAS, and that interpolated from the JANAF tables, are in close agreement. This should be no surprise since the data came from the JANAF tables.
Demo File for melting ice and boiling water

\[T = 373.000 \text{ K} \]
\[: \]
\[T = 373.200 \text{ K} \]
\[: \]
\[T = 373.400 \text{ K} \]
\[: \]
\[T = 373.600 \text{ K} \]
\[P = 1.013 \text{ bar} \]
\[V = 0.962 \text{D-02} \text{ liters} \]

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Qty (moles)</th>
<th>Final Qty (moles)</th>
<th>Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>0.10000D-05</td>
<td>0.10000D-05</td>
<td>0.32301D-02</td>
</tr>
<tr>
<td>H2O(g)</td>
<td>0.00000D+00</td>
<td>0.31261D-03</td>
<td>0.10098D+01</td>
</tr>
<tr>
<td>H2O(1)</td>
<td>0.10000D+01</td>
<td>0.99969D+00</td>
<td></td>
</tr>
<tr>
<td>H2O(s)</td>
<td>0.00000D+00</td>
<td>0.00000D+00</td>
<td></td>
</tr>
</tbody>
</table>

Species number 4 (H2O(s)) would be considered in the equilibrium set of phases if its free energy of formation were 2855.6 J/Mole more negative.

Pre-heat = 5.795 kJ
Heat of reaction = -0.013 kJ
Total heat = 5.807 kJ

\[T = 373.800 \text{ K} \]
\[P = 1.013 \text{ bar} \]
\[V = 30.681 \text{ liters} \]

<table>
<thead>
<tr>
<th>Species</th>
<th>Initial Qty (moles)</th>
<th>Final Qty (moles)</th>
<th>Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>0.10000D-05</td>
<td>0.10000D-05</td>
<td>0.10130D-05</td>
</tr>
<tr>
<td>H2O(g)</td>
<td>0.00000D+00</td>
<td>0.10000D+01</td>
<td>0.10130D+01</td>
</tr>
<tr>
<td>H2O(1)</td>
<td>0.10000D+01</td>
<td>0.00000D+00</td>
<td></td>
</tr>
<tr>
<td>H2O(s)</td>
<td>0.00000D+00</td>
<td>0.00000D+00</td>
<td></td>
</tr>
</tbody>
</table>

Species number 3 (H2O(1)) would be considered in the equilibrium set of phases if its free energy of formation were 11.9 J/Mole more negative.

Pre-heat = 5.810 kJ
Heat of reaction = 40.736 kJ
Total heat = 46.546 kJ

\[T = 374.000 \text{ K} \]

Fig. B.3. Data from SOLGAS as obtained by using the file WATER.CTL after choosing CHOICE 12.
APPENDIX C. Calculation Of a Simple Phase Diagram:
The Uranium-Fluorine System Between UF₄ And UF₆.

There are seven known solid fluorides of uranium: UF₅, UF₆, U₄F₁₇, U₆F₂₉, UF₅ (which exists in two known forms), and UF₆. The hexafluoride is the best known; it is used as the gaseous medium for enriching uranium in the fissionable isotope U-235. The composition region between UF₄ and UF₆ is fairly well known, and some of the thermodynamic data are available to describe the system. Perhaps the easiest way to describe what is known is to refer the reader to Fig. C.1, where most of the available thermodynamic data are tabulated. These are tabulated in the form useable by SOLGAS, and in this case, they come directly from the library to be described in Appendix F. Incidentally, the data of Fig. C.1 will also be used in Appendix D, where we show how to calculate temperatures reached when UF₄ is reacted in F₂.

In the present example, a control file (for menu CHOICE 12) was constructed in which many runs varying only in U to F ratio (ranging from UF₂ to UF₆) were specified. All runs were done at a temperature of 350° K and a constant pressure of 10 bar. The results provide the data to construct a phase diagram.

Fig. C.2 shows a plot of the partial pressures of the gaseous species (only). One can see that there are four regions, distinguished by the four different equilibrium partial pressures of UF₆(g). Fig. C.3 shows the equilibrium quantities (in moles per mole of U in the initial mixture). In the regions of the diagram depicted by the horizontal lines, two condensed phase uranium fluorides are present which determine the equilibrium vapor pressure of UF₆. Note that much the same information as is obtained in Fig. C.2 could be obtained in four runs of SOLGAS, one run in each of the condensed-phase regions.

Fig. C.1. Thermodynamic data for uranium fluorides.
UF\textsubscript{x} Equilibria at 350K & 10 Bar
"X" moles UF\textsubscript{4} + "1-X" moles UF\textsubscript{6}

Fig. C.2. A partial phase diagram of the U-F system, calculated from the thermodynamic data of Fig. C.1.
Fig C.3. Equilibrium quantities of uranium fluorides between UF$_4$ and UF$_6$.
APPENDIX D. Burning UF₄ In Fluorine. Use Of ADIABAT.

SOLGAS customarily calculates equilibrium under either constant temperature and pressure conditions, or under constant temperature and volume conditions. However, from the standpoint of safety or perhaps fuel economy, the maximum temperature rise a reaction can achieve can also be of interest. ADIABAT is a program designed to use SOLGAS iteratively to generate this information.

Fig. C.1, UF₄_BURN.DAT, is the thermodynamic data file created to investigate the temperature rise expected when UF₄ reacts with F₂ (data for Ni(s) were added to the file shown in that figure in order to make the calculations shown here). The "problem" is as follows:

A one-liter container, made of nickel and weighing 500 g, holds 15 g of UF₄. Fluorine gas, at a pressure of 0.5 bar, is introduced into the system. The system begins at 25° C (298.15 K). At a constant pressure and neglecting the effect of the container, what is the adiabatic change in system temperature and gas volume? If one included the container's ability to absorb heat, what is the adiabatic change in system temperature and gas volume? Further, under either of the above conditions, what is the effect on pressure of gases if the volume of the system is held constant? Thus, there are four conditions one might reasonably examine in connection with this problem.

The first step is to create a control file through which, to operate ADIABAT, one might give each of the four starting conditions. Such a file, UF₄_BURN.DRV, is shown in Fig. D.1. The first column of Fig. D.1 (all entries of which are "zeroes") indicates that SOLGAS is to investigate the temperature variation in each of the four cases. Column two presents, for each case, a "guess" temperature as a starting point for ADIABAT. Column three indicates either a constant pressure (0.5 bar, in this case) or a constant volume (1.0 liters—the negative sign telling SOLGAS the value is a volume, not a pressure). Column four gives the moles of argon gas input to ensure an equilibrium pressure could be achieved. Column 5 contains the moles of F₂ which is calculated from the ideal gas law at the starting temperature, pressure, and volume. Column 6 specifies the moles of UF₄ calculated from the 15 g known to be input. Column 7 includes (or omits) the mass of the nickel, again in moles rather than grams.
In order to perform the desired calculation, one must assure that ADIABAT.EXE, SOLGAS.EXE, and COMMAND.COM (from the user's DOS) are all present in the default directory. To initiate the calculation, one types ADIABAT <RTN>. The user is asked, in order, for a name of a SOLGAS thermodynamics data file (UF4_BURN.DAT), a control file name (UF4_BURN.DRV), and an output file name (UF4_BURN.PRN). The names in parentheses follow, through their extensions, the convention described here. There is no requirement to use this. A record of the screen display during the run is shown in Fig. D.2.

Fig. D.1. Image of the control file UF4_BURN.DRV

<table>
<thead>
<tr>
<th>Ctrl</th>
<th>T</th>
<th>P or V</th>
<th>Ar</th>
<th>F₂</th>
<th>UF₄</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>800</td>
<td>0.500</td>
<td>1E⁻⁶</td>
<td>0.0202</td>
<td>0.0478</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>300</td>
<td>0.500</td>
<td>1E⁻⁶</td>
<td>0.0202</td>
<td>0.0478</td>
<td>8.52</td>
</tr>
<tr>
<td>0</td>
<td>300</td>
<td>-1.00</td>
<td>1E⁻⁶</td>
<td>0.0202</td>
<td>0.0478</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>300</td>
<td>-1.00</td>
<td>1E⁻⁶</td>
<td>0.0202</td>
<td>0.0478</td>
<td>8.52</td>
</tr>
</tbody>
</table>

Fig. D.2. Output of the screen while SOLGAS runs under control file UF4_BURN.DRV.
In Fig. D.2, the run number is given first, followed by the equilibrium temperature. ADIABAT operates, as described previously, by searching for the temperature at which the algebraic sum of the "Pre-heat" and the "Heat of reaction" is zero, within 0.02 J. The deviation, to three significant figures, is given in the next column. The last columns give the amounts of the input materials to three significant figures.

The results are sent to an output file, under the name UF4_BURN.PRNY, as called for by the user initially. An image of this file is shown in Fig. D.3. One can conveniently import the file into a spreadsheet, and an image of such a file after importation is shown in Fig. D.4.

Both output schemes yield the same kinds of information, of course. At a constant pressure of 0.5 bar, the temperature could rise as high as 942 K, if no account is taken of heat loss to the container. However, if the container mass is included in the calculation, the rise in temperature is only to 328 K. (Incidentally, one must look to Fig. C.2 to learn that the starting temperature of the reaction was 298.15 K.)

If one maintains a constant volume, the temperature rise can be even higher when the mass of the container is ignored: 964 K. Including the container, however, yields essentially the same temperature rise as the constant pressure process. Of course, in a real situation, the instantaneous temperature rise will vary from point to point in the system, depending on the instantaneous availability of reactants, heat transfer, and interaction with container walls. However, the calculations establish limits, either to approach or avoid, as the demands of the situation dictate.

ADIABAT output does not tell the user what species are present at equilibrium. To find that, one would have to use the above data to specify starting conditions and rerun SOLGAS. If one were to do this in the above case, one would see that quite different products were produced at low temperatures relative to those produced at high temperatures. At low temperatures, the reaction of UF4 with the amount of F2 specified produces a mixture of solid U2F9 and solid UF. At high temperatures, the solid intermediate fluorides disproportionate to solid UF4 and gaseous uranium fluorides, most of which is UF6, although some gaseous UF5 and its dimer, U2F10, are also present.
<table>
<thead>
<tr>
<th>ID</th>
<th>T(K)</th>
<th>P (bar)</th>
<th>V (l)</th>
<th>Net Heat (kJ)</th>
<th>Name</th>
<th>Qi(1)</th>
<th>Name</th>
<th>Qi(2)</th>
<th>Name</th>
<th>Qi(3)</th>
<th>Name</th>
<th>Qi(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>942.30</td>
<td>5.000E-0001</td>
<td>3.590E+0000</td>
<td>-3.0000E-0003</td>
<td>Ar</td>
<td>1.0000E-0006</td>
<td>F2</td>
<td>2.0200E-0002</td>
<td>UF4(s)</td>
<td>4.7800E-0002</td>
<td>Ni(s)</td>
<td>1.0000E-0006</td>
</tr>
<tr>
<td>2</td>
<td>327.56</td>
<td>5.000E-0001</td>
<td>5.450E-0005</td>
<td>0.0000E+0000</td>
<td>Ar</td>
<td>1.0000E-0006</td>
<td>F2</td>
<td>2.0200E-0002</td>
<td>UF4(s)</td>
<td>4.7800E-0002</td>
<td>Ni(s)</td>
<td>8.5200E+0000</td>
</tr>
<tr>
<td>3</td>
<td>964.22</td>
<td>1.776E+0000</td>
<td>1.000E+0000</td>
<td>-2.0000E-0003</td>
<td>Ar</td>
<td>1.0000E-0006</td>
<td>F2</td>
<td>2.0200E-0002</td>
<td>UF4(s)</td>
<td>4.7800E-0002</td>
<td>Ni(s)</td>
<td>1.0000E-0006</td>
</tr>
<tr>
<td>4</td>
<td>327.56</td>
<td>3.620E-0005</td>
<td>1.000E+0000</td>
<td>0.0000E+0000</td>
<td>Ar</td>
<td>1.0000E-0006</td>
<td>F2</td>
<td>2.0200E-0002</td>
<td>UF4(s)</td>
<td>4.7800E-0002</td>
<td>Ni(s)</td>
<td>8.5200E+0000</td>
</tr>
</tbody>
</table>

[Note: Results for each run actually occupy a single line.]

Fig. D.3. Output from ADIABAT, UF4_BURN.PRN, obtained via SOLGAS.

<table>
<thead>
<tr>
<th>ID</th>
<th>T(K)</th>
<th>P (bar)</th>
<th>V (l)</th>
<th>Net Heat (kJ)</th>
<th>Name</th>
<th>Qi(1)</th>
<th>Name</th>
<th>Qi(2)</th>
<th>Name</th>
<th>Qi(3)</th>
<th>Name</th>
<th>Qi(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>942.30</td>
<td>0.5</td>
<td>3.59</td>
<td>-0.003</td>
<td>Ar</td>
<td>0.0000</td>
<td>F2</td>
<td>0.0202</td>
<td>UF4(s)</td>
<td>0.0478</td>
<td>Ni(s)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>327.56</td>
<td>0.5</td>
<td>0.00005</td>
<td>0</td>
<td>Ar</td>
<td>0.0000</td>
<td>F2</td>
<td>0.0202</td>
<td>UF4(s)</td>
<td>0.0478</td>
<td>Ni(s)</td>
<td>8.52</td>
</tr>
<tr>
<td>3</td>
<td>964.22</td>
<td>1.776</td>
<td>1</td>
<td>-0.002</td>
<td>Ar</td>
<td>0.0000</td>
<td>F2</td>
<td>0.0202</td>
<td>UF4(s)</td>
<td>0.0478</td>
<td>Ni(s)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>327.56</td>
<td>0.00003</td>
<td>1</td>
<td>0</td>
<td>Ar</td>
<td>0.0000</td>
<td>F2</td>
<td>0.0202</td>
<td>UF4(s)</td>
<td>0.0478</td>
<td>Ni(s)</td>
<td>8.52</td>
</tr>
</tbody>
</table>

Fig. D.4. Image of UF4_BURN.PRN after importing into Quattro Pro.
APPENDIX E. Calculations In The Cl-F-O-H System

Experimentally, when ClF₃ is reacted with moisture, a mixture of chlorine oxides or chlorine oxyfluorides is observed. The observation is at variance with thermodynamic calculations, even though the thermodynamic data are believed to be reliable within the accuracy needed by the calculation. To illustrate this behavior, two series of runs were done.

The first run (the straightforward approach) explored the equilibrium of the reaction between water and ClF₃ in a mixture with 50% of an inert gas, Argon. The constant pressure was 0.5 bar, the temperature 350 K. Species permitted in the example were:

- The gases Ar, H₂O, HCl, HF, Cl₂, Cl₂O, CIF, CIF₃, Cl₂O, Cl₂OF, Cl₃OF, Cl₃OF₂,
- F₂, O₂; the solution phase H₂O-HF; and the solid phase H₂O.

Thermodynamic data were taken from the LIBRARY.WK1 data base. Starting material consisted of 50 mol % Ar, 50 mol % × X, ClF₃ and 50 mol% × (1−X) gaseous H₂O (where X varies from zero to one). A control parameter file was created which defined approximately 100 different compositions, and SOLGAS was used under control of CHOICE 12, which was described in Section III.G.

Results of the extensive calculations were processed by means of the program MASSAGE, and these further results were imported into the spreadsheet program Quattro Pro. After the data were suitably sorted, they were plotted as shown in Fig. E.1.

Fig. E.1 shows nice linear relationships between the reactants and the products. Clearly, at equilibrium, gaseous water will convert ClF₃ into a mixture of HF, O₂, and Cl₂ if only enough water is present. However, in practice, this is not what is observed.

Fig. E.2 shows the calculated equilibrium if O₂ is not present in the list of species to be examined by SOLGAS. Qualitatively, the calculational results are in agreement with experiment. One sees that the oxides and oxyfluorides of chlorine are part of the equilibrium mix as long as elemental oxygen is not a possibility. One concludes, of course, that there is a kinetic barrier to formation of elemental oxygen in the reaction studied.
Fig. E.1. Plot of output from SOLGAS via Choice 12 for the F-Cl-O-H system when O₂ is allowed. Note that there are always 0.5 moles of reactants plus 0.5 moles of Ar.
Fig. E.2. Plot of output from SOLGAS via Choice 12 for the F-Cl-O-H system when O₂ is not allowed. Note that there are always 0.5 moles of reactants plus 0.5 moles of Ar.
APPENDIX F. Use Of a Spreadsheet As a Database For SOLGAS Input

I. Advantage of a spreadsheet database

Many, perhaps most, users of thermodynamic data work within a rather circumscribed region of data. Data on a few hundred compounds can be readily handled in a spreadsheet, a type of computer application that a great many people are becoming familiar with.

One rather obvious advantage is that once the data are firmly placed in the file (checked and rechecked), the possibility of mechanical (human) errors in working with the data is greatly reduced.

A second advantage of a database, such as is to be described, is the ease of use. Most users want to make a few calculations, aimed toward a specific answer within a project. They do not want to "make a career" of calculating thermodynamic quantities. A simple database that can be used by the occasional user can be highly desirable.

SOLGAS will satisfactorily operate on input files created in Lotus 123, Quattro Pro, or EXCEL. We assume other spreadsheet packages could be used as well. One must be a little careful in preparing a file. The next section describes a file that can be imported directly into any of the three software products mentioned here.

II. Cautions In The Use Of Other Spreadsheets.

The library described in the next section can be imported into other spreadsheets. But the user may have to make some minor adjustments.

This version of SOLGAS will accept data files (e.g., MY_FILE.DAT) with variables separated either by spaces or by commas. Sometimes one may think the delimiter is a space (ASCII number 32 in decimal or 20 in hexadecimal notation) when it really is a tab (ASCII and hexadecimal number 9). We mention these things to emphasize that the data files must be space or comma delimited.

Each user who uses the Lotus 1-2-3 library for importation into another spreadsheet may have to make minor adjustments in order to produce a file useable by SOLGAS.

III. A Lotus 1-2-3 version of LIBRARY

Two somewhat different spreadsheet versions of a library have been constructed by the authors, one for Lotus 123 and one for Quattro Pro. The Lotus version will be used as an example. Either library is available from the authors. The Lotus 123 library has been satisfactorily imported into EXCEL, although the translation routine has not been used to change the Lotus macros into EXCEL macros.

Fig. F.1 shows a part of the Lotus 123 library. The first row in Fig. F.1 actually starts at row 9 in the library, although the first column is column A in the library.
Sample Thermodynamics Data Library for SOLGAS v 2.44 - Spreadsheet-

Designate mat'ls to be considered with "x" in coln A, starting mat'ls with "*" in column B, and mixture (solution) numbers in column D. When finished, push (alt)C to create SOLGAS data file.

<table>
<thead>
<tr>
<th>Incl Start Matl</th>
<th>Data at 298.150 K</th>
<th>const</th>
<th>x T</th>
</tr>
</thead>
<tbody>
<tr>
<td>? SMixCompound</td>
<td>Formula</td>
<td>Hf</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J/mol</td>
<td>J/mol K</td>
</tr>
<tr>
<td>G He</td>
<td>He</td>
<td>0 126.152</td>
<td>20.786</td>
</tr>
<tr>
<td>x *G Ar</td>
<td>Ar</td>
<td>0 154.845</td>
<td>20.786</td>
</tr>
<tr>
<td>G N2</td>
<td>N2</td>
<td>0 191.609</td>
<td>24.524</td>
</tr>
<tr>
<td>x *G H2</td>
<td>H2</td>
<td>0 130.680</td>
<td>29.688</td>
</tr>
<tr>
<td>x *G O2</td>
<td>O2</td>
<td>0 205.147</td>
<td>26.112</td>
</tr>
<tr>
<td>G O</td>
<td>O</td>
<td>0 249173</td>
<td>161.058</td>
</tr>
<tr>
<td>x G H2O(g)</td>
<td>H2O</td>
<td>-241826</td>
<td>188.834</td>
</tr>
<tr>
<td>x P H2O(1)</td>
<td>H2O</td>
<td>-285830</td>
<td>69.950</td>
</tr>
<tr>
<td>x P H2O(s)</td>
<td>H2O</td>
<td>-292800</td>
<td>44.586</td>
</tr>
</tbody>
</table>

Fig. F.1. A portion of the library in Lotus 1-2-3.

Fig. F.2, taken from an "opening screen" in the spreadsheet, describes the function of macros used to assist in creation of SOLGAS data sets from the library. To start a new data file, the user types <ALT>+N, which eliminates any "x's" or "*"s" in either Column A or B which might have been left over from a previous session. Next, the user goes through the library (which is much more extensive than is shown in Fig. F.1) and selects both the materials to be examined in the equilibrium mix (by entering an "x" in Column A of the desired species) and the materials to be used as input species (by means of an "*" in Column B.) This operation is not easily automated, and usually requires judgement on the part of the user.

The user then uses the second macro: <ALT>+C. This macro creates the data file from the selections. The things the macro does are: (1) asks the user to enter a starting temperature; (2) asks the user to enter a data file name (e.g., MY_FILE.DAT); (3) asks the user to enter a file title or description (this information can be up to 500 characters long, but SOLGAS is going to ignore all but the first 80 characters after "TITLE="). Following these interactive steps, the macro automatically, (4) extracts a file of compounds, based on the "x's," and finally (5) creates and saves a file which SOLGAS can use, with the file name the user told it in step (2).

Two more macros can be useful to the user. One, using <ALT>+ S, prints out the file image, perhaps after the user makes some cosmetic changes. A fourth macro, using <ALT>+ X, acts to clean up working areas for smaller storage space.
Note that the work of the macros could be done manually by the user. For example, we imported the library into EXCEL, and were able to use virtually all the features of the Lotus 1-2-3 library unchanged except the macros. (See Section B, above, for a caveat on using an imported file.)

A limitation of this system is that SOLGAS allows up to 6 \(C_p \) equations per species. This library format allows for only one, the most common case in our usage. This limitation could be circumvented by including extra lines (rows) in the library which described the heat of transition, temperature of transition, and heat capacity constants, and then manually concatenating these in the test version of the data file. Alternatively, one could use multiple phases of the same species, as described previously in Section II.A.2.

Adding species to the library consists of (1) inserting a row by use of the appropriate spreadsheet commands into the main "library" area; (2) entering data in the appropriate cells; and (3) perhaps reformatting numeric formats in certain cells as desired or needed. Deleting a species from the library consists of deleting that species' row.

While the authors have not done so, transfer from data base packages are described by several spreadsheet manuals; e.g., QuattroPro, Excel, Lotus 123, or Enable. Those who have access to large data bases will most likely already have access to other, perhaps more powerful, calculation schemes.

Sample Spreadsheet Data Library for SOLGAS v 2.44

(alt)N: use to create a NEW data file for SOLGAS.
 In column "A", designate which species are to be included in the data file with "x".
 In column "B", designate starting materials with "*".
 In column "D", enter the number of the mixture for each species designated as a type "M". Enter as left justified text.

(alt)C: use to CREATE the data set once species are selected.

(alt)S: macro to simply print out FILE IMAGE (perhaps after user makes cosmetic changes)

(alt)X: clean up working areas for smaller storage.

A limitation of this system: SOLGAS allows up to 6 \(C_p \) equations per species. This library format allows for only one (the most common case in our usage). Additional equations can be incorporated using one of several methods (see LIBRARY.DOC).

To update species list, insert a line in the appropriate place in the library above. Add Species info. Make sure data ends in a semicolon (following which you may enter remarks). To delete a species simply delete the line from the main library list.

Fig. F.2. Opening screen of LIBRARY.WK1.
APPENDIX G. Calculations of non-ideal solutions

I. Introduction

If solutions [termed "mixtures"] are included in the list of species to examine as possibilities in the equilibrium assemblage, the approach in setting up the problem is a little more difficult—but not impossibly so. By default, SOLGAS will treat each mixture as an ideal solution. If a mixture should exhibit non-ideal behavior one simply includes, on line, additional parameters to describe that behavior.

For any species in a mixture [SOLGAS can treat binaries and ternaries] one still obtains and tabulates the heat of formation, the entropy, and the heat capacity of the pure species. SOLGAS calculates a "free energy," the dimensionless $G/(RT)$, as described in section I.D. And then, for the mixture, there must be added a contribution to the free energy because of the mixing. Part of this contribution is added by SOLGAS when the user indicates a mixture. The rest of the contribution is added, if necessary, by the user.

This additional contribution to the free energy, ΔG_{mix}, then, is made up of two parts: a part that is termed "ideal" and a part that is termed "excess," meaning excess over ideal. SOLGAS adds the "ideal" part automatically and the user adds, through an on-line question by SOLGAS, the excess part. This two-term additional contribution can be expressed mathematically as

$$\Delta G_{\text{mix}} = \Delta G_{\text{ideal}} + G^{\text{exs}}.$$ \hspace{1cm} (G1)

The ideal portion that SOLGAS adds automatically assumes that there is no heat of solution involved in mixing the two components (as is nearly true when mixing water and alcohol but not at all true when mixing H_2SO_4 and H_2O), and there is only an entropy of mixing. The "excess" term expresses the fact that the "ideal" term is inadequate to describe the free energy of the mixture.

If one has no data for a mixture, be it binary, ternary, or higher in complexity, one can assume an "ideal" solution as a first approximation. The term G^{exs} in this case is assumed to be zero.

In other cases, even when no measured heats of mixing or entropies of mixing are available, a second useful approximation can be made for binary mixtures: the "regular" solution. In this approximation, the "excess" term is described as

$$G^{\text{exs}} = R^*T^*\alpha^*N_1N_2.$$ \hspace{1cm} (G2)

where R is the gas constant, T is the temperature in kelvin, alpha is an appropriate constant, and N_1 and N_2 are mole fractions of species in a binary mixture.

If measured heats and entropies of mixing were available, one could compare these values with the "ideal" and/or the "regular" solution treatments. In cases where this has been done it is found, as one might expect, that neither approach is an exact description. As additional terms are added, better approximations to actual behavior can usually be obtained.

For both binary mixtures and ternary mixtures, SOLGAS assumes that neither heats nor entropies of mixing are available. One is expected to, by trial and error, input parameters in the
available equations and compare the computed results with phase relationships. If no phase data at all are available, one would have to arbitrarily enter parameters based on similar systems—which would probably be preferable to doing nothing at all. At least one would know what sort of measurements would be desirable.

In what follows, we describe first the equations used for binary and ternary mixtures. Then we describe the questions SOLGAS will ask the user and indicate possible answers. Finally, we give examples of the use of the equations to describe phase relationships.

While we use the capability to treat non-ideal mixtures to generate phase diagrams, the principal purpose of the program is to include the possibility of these mixtures in the equilibrium assemblage. Other programs can be used, probably more easily, to generate phase diagrams. Those programs will not, in general, generate the equilibrium composition from a large number of possibilities. It is this problem that SOLGAS solves.

1. Binary mixtures. The equation used by SOLGAS for binary mixtures to describe the excess free energy of a mixture, G^{ex}, is

$$G^{ex} = N_1 * N_2 [R_0 - R_1 * T + R_1 (a-2N_1) + R_2 (1-2N_1)^2] \quad (G3)$$

where T is the temperature in kelvin, N_i values are mole fractions, and R_0, R_1, R_2 are constants selected by the user. The equation is essentially the one used by Redlich and Kister, as mentioned previously. In order to calculate the heat involved in a given reaction, we have assumed that all of the subscripted "R" terms, except R_0, contribute to the heat of solution. Obviously, this is an approximation. However, lacking actual data the approximation in cases where the heat of solution is important is surely in the right direction and is a better approximation than assuming the heat of solution is zero—the ideal solution. That is, where data are available, we have not seen cases where the implied estimate would give a heat of solution of the wrong sign.

Examples of the effects of the several parameters on binary systems are given in Fig. G.1. One sees that all the parameters have a symmetrical effect, with respect to mole fraction of one constituent, on the excess free energy. A positive value for parameter R_0 causes a smooth increase in G^{ex}, from zero, to the midpoint of the solution composition, and a smooth decrease to zero thereafter. A negative value for this parameter yields the mirror image in the plot.

The R_1 parameter has an effect quite similar to the R_0 parameter. The influence on the total free energy will be, however, a function of temperature, as shown by Eqn. (G1).

Parameter R_1, if positive, has the effect of increasing the excess free energy (and the total free energy, of course) when N_1 is less than 0.5, and decreasing the excess free energy when N_1 lies between 0.5 and 1.0. A negative value of the R_1 parameter has the opposite effect. By inverting the order of inputting the original solution specie data one also inverts the two effects described in this paragraph, since SOLGAS assumes the first named solution constituent is N_1. The over all effect on the total free energy of the solution is to skew the value toward one side or the other.

Parameter R_2 has the effect of smoothly enhancing or flattening the free energy-composition curve.
Fig. G.1. Effects of Redlich-Kister parameters on excess free energy.
Sections III and IV of this Appendix are included to show effects on calculated phase diagrams of real systems. The CCl₄-CH₃OH system required a positive excess free energy and was solved by means of the original program received from Spear. The HF-H₂O system required a large negative excess free energy and could only be solved by means of the enhanced SOLGAS.

1.2. Ternary mixtures. Not only are heats, entropies, and free energies of solutions in short supply for ternary mixtures, phase diagrams are likewise less available than those for binary mixtures. Nevertheless, some useful initial approximations can be made.

If one has absolutely no data for a mixture, be it binary, ternary, or even higher in complexity, one can always assume an "ideal" solution as the first approximation: the heat of solution is zero and the entropy of mixing is the only contribution to the free energy of solution.

However, frequently binary phase data are available to describe these components of a ternary diagram. One can use this data to describe first approximations (that is, the binaries) to the ternary system.

The equation to describe molar value of G^{exs} for a ternary mixture is

$$G^{\text{exs}} = R_{ij}^1*N_1^*N_2 + R_{23}^2*N_2^*N_3 + R_{13}^3*N_3^*N_1,$$

where R_{ij}'s are constants describing the binaries consisting of species "i" and species "j," and the N_j's are mole fractions of the individual species at the composition of interest. Note that there is no term involving the ternary aspect. Rather, there are three terms, each involving one of the binary systems making up the ternary, and then the total effect is the addition of these three. It is as if the "remainder" of the effect is just that of an ideal solution.

The advantage to this approximation is that each binary can be modeled independently to get a value for R_{ij}, and then the input for each R_{ij} can be made when the ternary itself is examined.

In SOLGAS the R_{ij} term is not single valued but is expressed as

$$R_{ij} = R_{0ij} - R_{Tij}T,$$

where R_{0ij} is a constant term and R_{Tij} is a temperature-dependent term, and T is the temperature in kelvin as before. The temperature-dependent term differs from the usual expression of a "regular" solution.

The excess free energy contribution for each species, as well as activity coefficients, can be expressed, for example, for species "1" in a ternary system

$$G^{\text{exs}}(1) = \alpha G^{\text{exs}/\alpha X_1} - G^{\text{exs}},$$

and

$$\gamma_i = \exp \{ [G^{\text{exs}}(1)]/R*T \},$$

where γ_i is the activity coefficient for species (1), $G^{\text{exs}}(1)$ is the excess free energy contributed by species (1), and G^{exs} is the total excess molar free energy of the mixture.
Comparing Eqn. (G4), and the explanatory Eqn. (G5), with Eqn. (G3) reveals that the equations describing the binaries making up the ternaries are described by terms like the first two in the square brackets of Eqn. (G3). The effect of the parameter R_0 on each binary will be that shown in Fig. (G1), but the R_1 and R_2 terms are not available to describe ternary phase systems.

II. Questions and choices for CHOICE 14

If mixtures are to be a possibility in a particular problem, one includes this information in the SOLGAS data file as described in Section II of the main text. (Examples will be given in the next section of this appendix.) The screen detailing the choices available will appear after SOLGAS's reaction temperature question is answered and is shown in Section III.C. of the main text. One would first choose CHOICE [14] because one wants to include the possibility of having non-ideal mixtures in the system. Figure G.2 gives the further choices required of the user.

The Redlich-Kister Treatment will be used for non-ideal solutions:

$$G(\text{exs}) = (R_0 - T \cdot R T) \sum X_i X_j$$

plus (optional for binary mixtures only):

$$... + R_1^*(X_2 - X_1) + R_2^* (X_2 - X_1)^2$$

For each mixture, specify how it will be treated:

"0" for an IDEAL Solution,

"1" for a Binary NONIDEAL Sol’n (4 parameters),

"2" for a Binary or Ternary Nonideal Soln.

Fig. G.2. Screen display when CHOICE [14] is selected.

These subsequent choices allow one to select either an ideal mixture, a binary non-ideal mixture with up to 4 parameters as described in a previous section, or ternary non-ideal mixture—in which one could also treat binary mixtures by use of only two parameters.

The next section will treat, first, a moderately non-ideal solution of CCl₄ and CH₃OH; second, a very non-ideal solution of HF and water; and third, an imaginary ternary, A-B-C, the liquid phase of which is moderately non-ideal.

III. Calculation of equilibria in the CCl₄-CH₃OH system

The equilibrium pressure-composition phase diagram of the CCl₄-CH₃OH liquid system is well described by Barrow in his *Physical Chemistry*. Table G1 gives the basic data of the two different species in the form used by SOLGAS, and Fig. G.3 reproduces the calculated total pressures in the system as a function of mole fraction of CH₃OH. Only a single parameter, R_0 was used, but the agreement with the diagram in Barrow's text is excellent.

The positive value of R_0 used to describe the system would indicate that mixing the two liquids would absorb heat. Another way of looking at the effect would be that the two molecules are repulsive, relative to the tendency to attraction of an identical molecule.
Table G.1. Thermodynamic data for CCl₄-CH₃OH system in SOLGAS format

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>solution of Methanol and CCl₄ — For T vs X plot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>= 298.15;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*G</td>
<td>Ar(g)</td>
<td>Ar</td>
<td>0</td>
<td>154.845</td>
<td>20.786;</td>
</tr>
<tr>
<td>G</td>
<td>CCl₄(g)</td>
<td>CCl₄</td>
<td>-102900</td>
<td>309.850</td>
<td>83.300;</td>
</tr>
<tr>
<td>G</td>
<td>MeOH(g)</td>
<td>CH₄O</td>
<td>-200660</td>
<td>239.810</td>
<td>3.890;</td>
</tr>
<tr>
<td>M1</td>
<td>CCl₄(soln)</td>
<td>CCl₄</td>
<td>-135440</td>
<td>216.400</td>
<td>131.750;</td>
</tr>
<tr>
<td>M1</td>
<td>MeOH(soln)</td>
<td>CH₄O</td>
<td>-238660</td>
<td>126.800</td>
<td>81.600;</td>
</tr>
<tr>
<td>*P</td>
<td>CCl₄(1)</td>
<td>CCl₄</td>
<td>-135440</td>
<td>216.400</td>
<td>131.750;</td>
</tr>
<tr>
<td>*P</td>
<td>MeOH(1)</td>
<td>CH₄O</td>
<td>-238660</td>
<td>126.800</td>
<td>81.600;</td>
</tr>
</tbody>
</table>

IV. Calculations of equilibria in the HF-H₂O System

Figure G.4 gives the experimental data on pressures in the HF-H₂O liquid system by Hunter et al. The data were plotted with straight lines between points, rather than trying curve fitting. Hence, one can clearly see straight portions of lines between points.

Table G.2 gives thermodynamic data in the form used by SOLGAS, and Fig. G.5 depicts a plot of the data calculated by SOLGAS in which the single parameter Rₚ, with a value of -15,000, was used.

In Fig. G.5 there is excellent agreement with the form of the solution shown in Fig. G.4. We can change the shape somewhat by inputting values for the other three parameters. Several of the points in the vicinity of the consolute point could not be calculated by SOLGAS. The algorithm which describes the correction to the estimate cannot distinguish between the liquid and gaseous phases within a degree or so of the consolute temperature.

The large negative value of Rₚ, -15,000, used to describe is an indication of the substantial heat of solution when the two substances are mixed. This effect is the opposite of that in the CCl₄-CH₃OH solution. There is, one concludes, a strong affinity between water and HF.
Fig. G.3. Pressure-Composition diagram for CCl₄-CH₃OH system at 35°C.
Fig. G.4. Measured Temperature-Composition of H₂O-HF system at about 1 bar.
Table G.2. Thermodynamic data for H₂O-HF system in SOLGAS format

<table>
<thead>
<tr>
<th>TITLE HF—Water Solution test file</th>
</tr>
</thead>
<tbody>
<tr>
<td>T = 298.15</td>
</tr>
<tr>
<td>*G H₂O(g)</td>
</tr>
<tr>
<td>H₂O</td>
</tr>
<tr>
<td>*G HF(g)</td>
</tr>
<tr>
<td>HF</td>
</tr>
<tr>
<td>G (HF)2</td>
</tr>
<tr>
<td>H₂F₂</td>
</tr>
<tr>
<td>G (HF)3</td>
</tr>
<tr>
<td>G (HF)4</td>
</tr>
<tr>
<td>H₄F₄</td>
</tr>
<tr>
<td>G (HF)5</td>
</tr>
<tr>
<td>H₄F₅</td>
</tr>
<tr>
<td>G (HF)6</td>
</tr>
<tr>
<td>G (HF)7</td>
</tr>
<tr>
<td>H₇F₇</td>
</tr>
<tr>
<td>M1 H₂O(1)</td>
</tr>
<tr>
<td>H₂O</td>
</tr>
<tr>
<td>M1 HF(1)</td>
</tr>
<tr>
<td>HF</td>
</tr>
<tr>
<td>P H₂O(s)</td>
</tr>
<tr>
<td>H₂O</td>
</tr>
</tbody>
</table>
Fig. G.5. Temperature-Composition diagram of H$_2$O-HF system calculated via SOLGAS.
V. Treatment of the ternary mixture A-B-C.

Data for the system containing argon gas and species A, B, and C in the gaseous, the solid, and the mixture state are given in Table G3. Note that the first column contains only asterisks, which indicate the species used as input. The second column identifies the phase of the species of column three in the way described in Section II of the main part. The third column indicates the components, of which there are four: Ar, A, B, and C. And then the thermodynamic data complete the table.

Table G.3. Data for ternary system A-B-C.

<table>
<thead>
<tr>
<th>TITLE - Solution of A and B and C</th>
<th>T = 298.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>* G Ar (g) Ar</td>
<td>0 154.845 20.786</td>
</tr>
<tr>
<td>G A (g) A</td>
<td>415471 180.488 25.675</td>
</tr>
<tr>
<td>G B (g) B</td>
<td>430115 182.190 23.360</td>
</tr>
<tr>
<td>G C (g) C</td>
<td>426676 179.518 23.024</td>
</tr>
<tr>
<td>M1 A (l) A</td>
<td>12395 34.763 25.096</td>
</tr>
<tr>
<td>M1 B (l) B</td>
<td>17479 41.487 26.133</td>
</tr>
<tr>
<td>M1 C (l) C</td>
<td>18004 41.000 24.811</td>
</tr>
<tr>
<td>P A (s) A</td>
<td>0 27.321 25.094</td>
</tr>
<tr>
<td>P B (s) B</td>
<td>0 29.870 25.987</td>
</tr>
<tr>
<td>P C (s) C</td>
<td>0 30.067 24.802</td>
</tr>
</tbody>
</table>

Note that the only mixture is indicated by the identification in column two by M1.

The reader will find it relatively easy to find that the eutectic temperature of, for example, the binary system A-B is above 950 K when an R parameter of 5000 and an RT parameter of 0 are used. One could do this, perhaps most easily, in the binary non-ideal treatment, but could also do it in the ternary system, indicating that there is no component C present.

Now if one chooses additional parameters R parameters of 6000 for the B-C binary and 4000 for the A-C binary as the user is asked for these values, one can describe the constant pressure, constant temperature ternary diagram. Figure G.6 shows the output from this calculation in the region A(s)-B(s)-liquid mixture.

If one selects two more appropriate compositions, one can generate the data for the ternary constant temperature diagram shown in Fig. G.7. The data for this figure are given in Table G.4.
Solution of A and B and C

3 = No. of Condensed Phases of Fixed Composition
2 = No. of Mixtures
4 = No. of Species in Mixture # 1
3 = No. of Species in Mixture # 2
4 = No. of Elements
4 = No. of Linearly Independent Components

Initial Temperature of Starting Materials = 298.15 K

T = 950.000 K
P = 1.000 bar
V = 0.790 liters

Data from: TERN5.CSV
Results to: TERN5.003

<table>
<thead>
<tr>
<th>Initial Qty</th>
<th>Final Qty</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(moles)</td>
<td>(moles)</td>
<td>(bar)</td>
</tr>
<tr>
<td>Ar(g)</td>
<td>0.10000D-01</td>
<td>0.10000D-01</td>
</tr>
<tr>
<td>A(g)</td>
<td>0.00000D+00</td>
<td>0.14831D-16</td>
</tr>
<tr>
<td>B(g)</td>
<td>0.00000D+00</td>
<td>0.17480D-17</td>
</tr>
<tr>
<td>C(g)</td>
<td>0.00000D+00</td>
<td>0.14141D-17</td>
</tr>
</tbody>
</table>

Mixture 1 is treated as non-ideal per:

\[G(\text{excess}) = \sum (B_{ij} - T_{BT_{ij}}) X_i X_j \]

(with j ne i)

\[B(1,2) = 5000.0, \quad BT(1,2) = 0.00 \]
\[B(2,3) = 6000.0, \quad BT(2,3) = 0.00 \]
\[B(3,1) = 4000.0, \quad BT(3,1) = 0.00 \]

Mole Fraction

A(1) | 0.00000D+00 | 0.24946D+00 | 0.44719D+00 |
B(1) | 0.00000D+00 | 0.20838D+00 | 0.37355D+00 |
C(1) | 0.00000D+00 | 0.10000D+00 | 0.17926D+00 |

A(s) | 0.40000D+00 | 0.15054D+00 |
B(s) | 0.50000D+00 | 0.29162D+00 |
C(s) | 0.10000D+00 | 0.00000D+00 |

Species no. 10 (C(s)) would be considered in the equilibrium set of phases if its free energy of formation were 2768.9 J/Mole more more negative.

Pre-heat = 16.765 kJ
Heat of reaction = 9.070 kJ
Total heat = 25.835 kJ

Fig. G.6. Output from ternary mixture computation.
Fig. G.7. Constant temperature, constant pressure diagram of the ternary system A-B-C containing a non-ideal ternary mixture.
Table G.4. Input and output data for the system Ar-A-B-C showing the ternary liquid composition.

<table>
<thead>
<tr>
<th>Input values</th>
<th>Solid phases present = liquid composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>0.1</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Note in Fig. G.7 that there are three three-phase regions and three two phase regions separating the three phase regions one from the other. The single phase liquid region in the middle will not, in general, have the straight lines shown for convenience, but there will be some curvature which we did not examine—but which could conveniently be examined via SOLGAS if that were desirable. Note also that we have assumed that the three solids, A, B, and C have no region of solid solubility, which is convenient but wrong in principle.
APPENDIX H. AQUEOUS SOLUTIONS

I. Introduction

A major subset of thermodynamics problems are those concerned with aqueous solutions. Aqueous solution chemistry includes problems involving solubility, transport, and precipitation of water soluble species, pH calculations, and electrochemical corrosion, among others. Practical problems often involve a considerable number of potential ionic and neutral dissolved species and many possible solid phases. The result can be impractical to solve by manual methods. SOLGAS can be used to advantage to model such problems, within certain limitations.

II. Limitations and caveats applicable to aqueous solutions

Ideal Behavior: As presently constituted, the program will treat all mixtures as ideal solutions, except for the provision of non-ideal behavior in binary and ternary mixtures (discussed elsewhere in this document). Most aqueous solution problems will deal with a solution consisting mainly of water (of course) with a moderate to large number of potential ionic or neutral dissolved species. There is no provision in this version of SOLGAS to make the solution as a whole, or species individually, to behave nonideally. In ionic solution chemistry, non-ideality treatments of ionic species often take the form of an activity coefficient which modifies the activity of the species as a function of the concentration of ions in solution. If extensive work with concentrated ionic solutions were contemplated by a user, it would be useful to modify SOLGAS to treat non-ideality, e.g., by use of activity coefficients calculated by means of solution ionic strength by a model such as the Debye-Huckel theory.

In the limit of infinite dilution, solutions will behave ideally according to Henry's law. Consequently, SOLGAS as presently constituted should give accurate answers (within the limits of the data and kinetics) for dilute solutions. Results that yield more concentrated solutions should be regarded as quantitatively less reliable. There is no general guidance that can be given as to what solution might be considered "dilute" in this context and what might be considered "concentrated." As with other thermodynamic modeling problems, the user is well-advised to check answers against whatever other data might be available, such as solubility products, or activities of particular constituents of the mixture.

Charge neutrality: Ionic solutions implicitly require charge neutrality (i.e. the total number of positive charges must equal the total number of negative charges). There is no overt provision in SOLGAS to recognize the charge on a particular ionic species. In general, it will be necessary to resort to some mechanism for artificially forcing charge neutrality.

The most straightforward method we have found is to overtly add charges to the chemical formulae species under considerations by the addition of two imaginary elements, which in this and later discussion will be termed "Cp" and "Cn" for "Charge-Positive" and "Charge-Negative." The formula for a positive ion will include the necessary quantity of "Cp," e.g., the species Mg"+ (aq) will be given the formula "MgCp2." Similarly, negatively charged species will have the requisite number of "Cn": OH" will be entered as "OHCn."

In addition, a reservoir of positive and negative charges is necessary. An imaginary pure species, "CpCn" is included in the data set, with enthalpy and entropy of formation and heat capacity set to zero. This reservoir must be specified as a starting material, and a sufficient starting
quantity must be specified to allow for any degree of ionization that may take place. Consider this reservoir as a "bank" from which the program may make withdrawals or deposits of equal numbers of positive and negative charges. The sample problem in this appendix illustrates the use of this method for forcing charge neutrality.

The above-described method is not the only one possible, and it leads to certain potential problems. This method has added two additional (pseudo)elements to the problem. A minor problem is that this cuts down on the number of real elements that can be considered. A more serious problem is that this leads to the potential for violation of the phase rule. Two additional elements means that potentially, two additional phases can appear in the answer. One of the components is not truly independent of the other, in that the quantity of one is forced to equal the quantity of the other (charge neutrality). Thus the problem has one degree of freedom implicitly removed by the choice of a charge-neutral set of starting quantities. Still, there appears to be a possibility of an additional phase appearing, in violation of the phase rule, due to the addition of the pseudo-element representing charge. In the various test cases we have run, however, we have not observed a situation in which the phase rule is violated.

It was stated earlier that the choice of charge-neutral initial quantities implicitly removed one (artificial) degree of freedom from the problem. As in problems in which the program attempts a calculation exactly on a stoichiometric boundary, this may lead to failure to converge to an answer, and cause SOLGAS to resort to the subroutine that alters the starting quantities slightly. This is particularly true if the solution phase should be unstable (i.e. the solvent evaporates or freezes). If this subroutine is invoked, then neither the starting quantities nor will the final answer be quite charge neutral, though the deviation from neutrality will be very small. The result may, however, include the spurious appearance of a minute quantity of the solution phase, mathematically necessary to contain the charge imbalance.

Reference State of Species: Typical tabulated thermodynamic data for aqueous species (e.g., in Ref. 9) provides information at the "aqueous standard state." This standard state is at a temperature of 25°C (298.15K), a pressure of 1 bar, and represents the dilute solution thermodynamic values extrapolated to a concentration of one mole per kilogram of aqueous solution. The temperature and pressure standard state definitions are the same as those used in SOLGAS, but the concentration definition is not. SOLGAS's standard state in solution is extrapolated to "1 mole per mole of solution," i.e. extrapolated to the pure component, a definition customary in nonaqueous condensed phase work. Since the standard states are at different concentrations, the entropy is the term affected. One kilogram of water contains 55.508 moles of water. Thus, tabulated entropies for aqueous standard state species (often designated "ao") should be adjusted by

\[
S_{\text{corr}} = R \ln \left(\frac{X_{aq}^0}{X_{\text{aq}}} \right),
\]

\[
= 8.3145 \ln \left(\frac{1}{55.508} \right) \text{ J} - \text{mol}^{-1} - \text{K}^{-1},
\]

\[
= -33.395 \text{ J} - \text{mol}^{-1} - \text{K}^{-1}.
\]

Enthalpy of formation and heat capacity values are not affected by this difference in choice of standard state.

Data Sources: A useful source for data for use in aqueous solution problems is [Ref. 9]. It contains a large number of entries for numerous ionic and neutral species. We have generally used these data for the aqueous standard state (species designated as "ao"), suitably adjusting the
entropy. Data is available for selected species at different concentrations. This could be useful to
obtain better accuracy, especially in concentrated solutions where the assumption of ideality serves
less well. Data listed as "ai" (aqueous at infinite dilution) is merely the sum of the values for the
ionic species.

It is best to use data for individual ions, e.g., Na\(^+\) and Cl\(^-\) rather than for "dissolved NaCl." In
the NBS reference, an entry containing a neutral or associated species, e.g., "HF(ao)," refers
to the undissociated species HF in solution, which would be accompanied by the dissociated
constituents "H\(^+\)(ao)" and "F\(^-\)(ao)." Other data sources may provide data (e.g., on HF(aq)) that
combines dissociated and undissociated dissolved species. Such types of data should be avoided
as they may lead to confusion (and we speculate may result in error) when attempting to
calculate, say, ion concentrations in problems involving multiple ionic species.

A convention used in [Ref. 91 is to treat H\(^+\)(aq) as having zero ΔH\(_f\), \(S^0\), and Cp. For an acid,
all the experimental ΔH\(_f\), \(S^0\), and Cp are attributed to the anion. The difference between the values
for an acid and a corresponding salt are attributed to the salt’s cation. These assignments are
arbitrary but internally consistent. They can lead to negative values for \(S^0\) and Cp, which is not
a problem. The value of Cp is often not known for ionic species. This is most often the case for
species that have little solubility and thus will not be a major constituent of the solution. Entering
"0" for Cp, or another guess will likely do little harm in such cases. If a problem is run at exactly
25°C (298.15K), the reference temperature, then Cp is moot anyway. SOLGAS demands that some
numeric value be present for Cp, however, in the data set.

Sample problem(s)

Perhaps the simplest demonstration of aqueous solution is the case of pure water. A data file
is shown in Fig. H.1 and a sample output file in Fig. H.2. The conventional standard state for
H\(^+\)(ao) is defined as having zero heat of formation, entropy and heat capacity at a concentration
of 1 mole per liter. In Fig. H.1, the entropy has been adjusted by −33.395 J/mol K to account for
SOLGAS’ alternate assumption about the concentration of a solution standard state. A similar
adjustment has been made to the literature value of the entropy of OH\(^-\), but not to that of H2O(l),
for which the literature data is given for the pure material (i.e. at 100% concentration). Other than
the entropy adjustments to aqueous species, the remainder of the data are taken from standard
sources. Since the calculation will be run at or near the reference temperature of 298.15K, no
attempt has been made to incorporate temperature-dependent terms for the heat capacity. If one
desired to use the species H\(_3\)O\(^+\) instead of H\(^+\), the thermodynamic values for 1 H2O plus one H\(^+\)
would have to be added.

The "+" and "−" charges on aqueous ions are indicated by the inclusion of the pseudo-
elements Cp and Cn. In addition to the physical species, the imaginary species "CpCn" is also
included to provide a supply of "+" and "−" charges to allow ionized species to appear as the
thermodynamics dictate.
TITLE Demo file - water ionization

<table>
<thead>
<tr>
<th>T</th>
<th>(\Delta H_f)</th>
<th>S</th>
<th>(C_p)</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.15</td>
<td>154.843</td>
<td>20.786</td>
<td>NBS 82</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Ar</td>
<td>Ar</td>
<td>0</td>
<td>154.843</td>
</tr>
<tr>
<td>G</td>
<td>H(_2)O(g)</td>
<td>H(_2)O</td>
<td>-241818</td>
<td>188.825</td>
</tr>
<tr>
<td>M1</td>
<td>H(_2)O(solvent)</td>
<td>H(_2)O</td>
<td>-285830</td>
<td>69.910</td>
</tr>
<tr>
<td>M1</td>
<td>H+(ao)</td>
<td>HCP</td>
<td>0</td>
<td>-33.395</td>
</tr>
<tr>
<td>M1</td>
<td>OH–(ao)</td>
<td>OHCn</td>
<td>-229994</td>
<td>-44.145</td>
</tr>
<tr>
<td>*P</td>
<td>Aether</td>
<td>CpCn</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^1\)Note that the designations "\(\Delta H_f \)," "S," "\(C_p \)," and "data source" do not appear in the actual data file but are just added here for clarity.

Fig. H.1. DATA FILE:¹

Demo file water ionization

1 = No. of Condensed Phases of Fixed Composition
2 = No. of Mixtures
2 = No. of Species in Mixture # 1
3 = No. of Species in Mixture # 2
5 = No. of Elements
4 = No. of Linearly Independent Components

Initial Temperature of Starting Materials = 298.15 K

<table>
<thead>
<tr>
<th>T</th>
<th>298.150 K</th>
<th>Data from: water.dat</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1.000 bar</td>
<td>Results to: water.out</td>
</tr>
<tr>
<td>V</td>
<td>2.560 liters</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial Qty (moles)</th>
<th>Final Qty (moles)</th>
<th>Pressure (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar 0.10000D+00</td>
<td>0.10000D+00</td>
<td>0.96832D+00</td>
</tr>
<tr>
<td>H(_2)O(g) 0.00000D+00</td>
<td>0.32718D–02</td>
<td>0.31681D–01</td>
</tr>
<tr>
<td>H(_2)O(solvent) 0.55511D+02</td>
<td>0.55508D+02</td>
<td>Mole Fraction</td>
</tr>
<tr>
<td>H+(ao) 0.00000D+00</td>
<td>0.10057D–06</td>
<td>0.18118D–08</td>
</tr>
<tr>
<td>OH–(ao) 0.00000D+00</td>
<td>0.10057D–06</td>
<td>0.18118D–08</td>
</tr>
<tr>
<td>Aether 0.10000D+01</td>
<td>0.10000D+01</td>
<td></td>
</tr>
</tbody>
</table>

Pre-heat = 0.000 kJ
Heat of reaction = 0.144 kJ
Total heat = 0.144 kJ

Fig. H.2. Sample output file.
Figure H.2 shows the output of a run using this file. The run was done at 298.15 K and 1 bar. The initial quantity of water specified was chosen to have 55.508 moles, which is to say 1 kg, of water in solution at these conditions. Thus the "final quantity" column, which is given in moles, will also in this case give the number of moles/kg of solution species (avoiding the need for recomputation of moles/kg from mole fractions given in the third numeric column).

One mole of "CpCn" was provided in the initial mixture. In this case, that quantity proved to be about a 10 million fold excess of what was needed to accommodate the needs of the aqueous ionized species. So long as some CpCn remains in the output, then the thermodynamics computation should reach its desired equilibrium endpoint.

In this example, the ionization product of water, \(K_i = [\text{H}^+][\text{OH}^-] \) is calculated to be 1.011\(\times 10^{-14} \), which agrees reasonably well with the literature value of 1.008\(\times 10^{-14} \) [Ref. 12, p D-168].

A second sample problem is shown in Fig. H.3 and involves the dissolution and ionization of carbon dioxide in water. The data file is displayed in Fig. H.4, and incorporates gaseous \(\text{CO}_2 \) and three dissolved species: un-ionized \(\text{CO}_2 \), the singly ionized bicarbonate ion (\(\text{HCO}_3^- \)), and the doubly ionized carbonate (\(\text{CO}_3^{2-} \)). \(\text{H}^+ \) and \(\text{OH}^- \) are also, of course, included in the solution phase.

<table>
<thead>
<tr>
<th>TITLE Demo File for CO2-H2O system</th>
</tr>
</thead>
<tbody>
<tr>
<td>T= 298.15 ;</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*G</td>
<td>Ar</td>
<td>Ar</td>
<td>0</td>
<td>154.843</td>
</tr>
<tr>
<td>*G</td>
<td>CO2(g)</td>
<td>CO2</td>
<td>-393509</td>
<td>213.740</td>
</tr>
<tr>
<td>G</td>
<td>H2O(g)</td>
<td>H2O</td>
<td>-241818</td>
<td>188.825</td>
</tr>
<tr>
<td>*M1</td>
<td>H2O(solvent)</td>
<td>H2O</td>
<td>-285830</td>
<td>69.910</td>
</tr>
<tr>
<td>M1</td>
<td>H+(ao)</td>
<td>HCP</td>
<td>0</td>
<td>-33.395</td>
</tr>
<tr>
<td>M1</td>
<td>OH-(ao)</td>
<td>OHCn</td>
<td>-229994</td>
<td>-44.145</td>
</tr>
<tr>
<td>M1</td>
<td>HCO3-(ao)</td>
<td>HCO3Cn</td>
<td>-691990</td>
<td>57.805</td>
</tr>
<tr>
<td>M1</td>
<td>CO2(ao)</td>
<td>CO2</td>
<td>-413800</td>
<td>84.205</td>
</tr>
<tr>
<td>M1</td>
<td>CO3=(ao)</td>
<td>CO3Cn2</td>
<td>-677140</td>
<td>-90.295</td>
</tr>
<tr>
<td>*P</td>
<td>Aether</td>
<td>CpCn</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. H.3. Second aqueous solution sample problem

Cp values for a few of the species were not available; these have "000" entered in that field in the data set. This is not a special code as far as SOLGAS is concerned ("000" is read as "zero"). Since we will run this example at the reference temperature of 298.15K, lack of this information will not affect the results.

The calculated results for one set of starting quantities is shown in Fig. H.4. The starting quantities were chosen to yield a gas concentration of \(\text{CO}_2 \) which is about that which prevails in the earth's atmosphere (ca 300 ppm) at the present time. As in the previous example, the initial quantity of water was chosen so as to yield approximately one kg of water in the aqueous phase, allowing the final "moles" column to double as "moles/kg solution."
Several observations and checks against literature data can be derived from these results. First, one observes that the pH of the solution (which is defined as $-\log_{10}[H^+]$) is predicted to be 5.7, i.e. slightly acidic. Barring other influences, this is what one would expect the pH of rainwater to be at these CO$_2$ levels. The ionization product for water again computes to be 1.011×10^{-14} (as it should).

Carbonic acid has two ionization products. The values for the first and second products, as computed here and as compared to literature values (taken from [Ref. 12, p D-167] are:

$$K_1 = [H^+][HCO_3^-]/[CO_2] = 4.28\times10^{-7} \text{ (computed)}$$

vs. 4.30×10^{-7} \text{ (literature)}

$$K_2 = [H^+][CO_3^{2-}]/[HCO_3^-] = 4.60\times10^{-11} \text{ (computed)}$$

vs. 5.61×10^{-11} \text{ (literature)}

The slight discrepancy in the second ionization constant is likely due to use of different thermodynamic values.

Demo File for CO2 H$_2$O system

1 = No. of Condensed Phases of Fixed Composition
2 = No. of Mixtures
3 = No. of Species in Mixture # 1
6 = No. of Species in Mixture # 2
6 = No. of Elements
5 = No. of Linearly Independent Components

Initial Temperature of Starting Materials = 298.15 K
T = 298.150 K
Data from: carbonic.dat
P = 1.000 bar
Results to: carbonic.out
V = 2.561 liters

<table>
<thead>
<tr>
<th>Initial Qty</th>
<th>Final Qty</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(moles)</td>
<td>(moles)</td>
<td>(bar)</td>
</tr>
<tr>
<td>Ar</td>
<td>0.10000D+00</td>
<td>0.10000D+00</td>
</tr>
<tr>
<td>CO$_2$(g)</td>
<td>0.44000D-04</td>
<td>0.31490D-04</td>
</tr>
<tr>
<td>H$_2$O(g)</td>
<td>0.00000D+00</td>
<td>0.32728D-02</td>
</tr>
<tr>
<td>H$_2$O(solven)</td>
<td>0.55511D+02</td>
<td>0.55508D+02</td>
</tr>
<tr>
<td>H$^+$ (ao)</td>
<td>0.00000D+00</td>
<td>0.21114D-05</td>
</tr>
<tr>
<td>OH$^-$ (ao)</td>
<td>0.00000D+00</td>
<td>0.47902D-08</td>
</tr>
<tr>
<td>HCO$_3^-$ (ao)</td>
<td>0.00000D+00</td>
<td>0.21066D-05</td>
</tr>
<tr>
<td>CO$_2$ (ao)</td>
<td>0.00000D+00</td>
<td>0.10403D-04</td>
</tr>
<tr>
<td>CO$_3^{2-}$ (ao)</td>
<td>0.00000D+00</td>
<td>0.45887D-10</td>
</tr>
<tr>
<td>Aether</td>
<td>0.10000D+01</td>
<td>0.10000D+01</td>
</tr>
</tbody>
</table>

Pre-heat = 0.000 kJ
Heat of reaction = 0.144 kJ
Total heat = 0.144 kJ

Fig. H.4. Results of second aqueous solution sample problem
REFERENCES

15. Lotus 1-2-3 is a registered trademark of Lotus Development Corporation; Quattro Pro is a registered trademark of Borland International; Excel is a registered trademark of Microsoft, Inc.

ATTACHMENT I

PROGRAM LISTING OF SOLGAS.FOR
PROGRAM SOLGAS
*** version 3.02b4 ***
Calculation of Thermodynamic Phase Equilibria at Constant Pressure or Volume.

August 23, 1995

"Most recent fingerprints" are those of...
Dr. J.M. Leitnaker
Leitnaker Technical Associates
Kingston, TN

&
Dr. L.D. Trowbridge
Lockheed-Martin Energy Systems
P.O. Box 2003, M.S. 726A
Oak Ridge, TN 37831
ph (615) 576-2496
Internet: <LTDCSTC10.CTD.ORNFL.GOV>

whose efforts were funded by
the U.S. Department of Energy under Contract No. DE-AC05-76OR00001 and
the U.S. Enrichment Corp. under Contract No. USEGAQ-93-C-0001.

This version adapted from SOLGASMIX-PV by P.K. Liao and K.E. Spear

C Modifications (1991-1995) by LDT & JML include:
C Compiles with Ryan/McFarland Fortran (IBM PC); with minor changes,
C compiles with Microsoft Fortran or with VAX (VMS) Fortran. Search for
C the word "M/S14" or "VAX", activate the appropriate lines, and recompile.

C Limits: Max Species = 99 Each of these limits is
C Max Phases = 20 protected from violation
C Max Elements = 10 in the routine named
C Max Start Mat = 20 READFILE...
C Input Record Length < 501 characters ... except this one.

INCLUDE 'sol302b4.inc'

DIMENSION BIN(20,99)

The following are recommended by CODATA (1986), replacing earlier 8.31433
J/mole/K

RJ = 8.3145107

J/mole/K

C Maximum coefficient allowed by Double precision EXP function:
DEXP-MIN = -709.7
C I/O Device numbers
IPRM = 3
IN = 4
IOCRT = 6
IOUT = 7

H = -DLOG(1.01)
KVALT = 8
MF(1) = 1
WRITE(IOCRT,*), **** SOLGAS Version 3.02b4 ****
WRITE(IOCRT,*)

C *** Entry point for new data sets (option 8) ***
26 PTOT = 1.
DO 111 I = 110
111 TR(I) = .FALSE.
CH3 = .FALSE.
CH3A = .FALSE.

C CH3 and CH3A are flags to control CHOICE 3's
C operation.

ICHD=0
ICHS=0
WRITE(IOCRT,*), Input File Name :
READ(*,190) INFNAME
INQUIRE(FILE=INFNAME,EXIST=FILEFLAG)
IF (.NOT.FILEFLAG) GO TO 9901
WRITE(*,9903) INFNAME
9903 FORMAT(' Could not find the file ',A40)
GO TO 26
9901 WRITE(IOCRT,*), Output File Name :
READ(*,190) OUTFNAME
INQUIRE(FILE=OUTFNAME,EXIST=FILEFLAG)
IF (.NOT.FILEFLAG) GO TO 9902
WRITE(*,9904) OUTFNAME
9904 FORMAT(' A file already exists by the name of ',A30,'. Use a different filename.')
GO TO 9901
910 FORMAT(A)
9902 V = 0.
DO 48 K=1,20
KH(K) = 0
OPEN(IOUT,FILE=OUTFNAME,STATUS='NEW')
FILEFLAG=.FALSE.
CALL READFILE
IF (.NOT.FILEFLAG) GO TO 26
CALL DOF
DO 701,I = 1,MP
IDEAL(I) = 0.
DO 1131 J=0,2
RT(J,I) = 0.
RO(J,I) = 0.
1131 WRITE(IOY,113) TSTART
48 CONTINUE
701 CONTINUE
DO 1131 IOY=IOCRT, IOUT
1131 WRITE(IOY,113) TSTART
113 WRITE(IOCRT,*), Initial Temperature of Starting Materials = ', F8.2, 'K',/
42 WRITE(IOCRT,*), Input the Reaction Temperature (K):'
C ***** Entry point for temperature input (Menu Sel. [6])******
READ(*,*) T
193 CALL HETTA
GO TO 8
C *** Menu selection [7] (const P or V specification) ****
37 WRITE(IOCRT,*), Input Pressure (as a positive number)',/
1' or Volume (as a negative number)'
WRITE(IOCRT,*), P(bar) or -V(liters) :'
READ(*,*) PTOT
V = DMAX(-PTOT,0,DO)
C **** Entry point for main menu ***
1132 FORMAT(///,' CHOICE 3:The previously calculated Y()s are used for CH3
Input parameters.///)'
8 CONTINUE
IF (CH3) THEN
WRITE(IOCRT,1132) CH3
ELSE
WRITE(IOCRT,1132) CH3
END IF
CH3
WRITE(IOCRT,*), (1) Computer selects a starting estimate'
WRITE(IOCRT,*), (2) Manually select a starting estimate'
WRITE(IOCRT,*), (3) Use previously calc Y() values as starting
estimate. A toggle. '
WRITE(IOCRT,*), (4) Change quantities of starting material only'
WRITE(IOCRT,*), (5) Recalc. with same data, pts. & quantities'
WRITE(IOCRT,*), (6) Change the reaction temperature '
WRITE(IOCRT,*), (7) Change value of fixed pressure or volume'
WRITE(IOCRT,*), (8) Change to a new system'
WRITE(IOCRT,*), (9) Exit program'
WRITE(IOCRT,*), (10) Save the last calculated result'
WRITE(IOCRT,*), (11) Save the last series of results'
WRITE(IOCRT,*), (12) Read run data from a parameter file'
WRITE(IOCRT,*), (13) Change thermodynamic data of a species'
WRITE(IOCRT,*), (14) Input non-ideal solution constants'
WRITE(IOCRT,*), (15) Select an Option: '
WRITE(IOCRT,*), NCODE = 0
NP=1
READ(*,*) KVAL1
IF (KVAL1.EQ.99) THEN
CALL TRACPRNT
GO TO 8
ELSE
IF (KVAL1.GT.9) NCODE = 1
IOY=NCODE+IOCRT
GO TO (40,40,44,7,34,42,37,26,1,64,34,1300,41,43,)
44 CH3 = (.NOT. CH3)
CH3A = .TRUE.
GOTO 8
1141 Input non-ideal solution constants'
C ***** Entry point for main menu ***
1132 FORMAT(///,' CHOICE 3:The previously calculated Y()s are used for CH3
Input parameters.///)'
8 CONTINUE
IF (CH3) THEN
WRITE(IOCRT,1132) CH3
ELSE
WRITE(IOCRT,1132) CH3
END IF
CH3
WRITE(IOCRT,*), (1) Computer selects a starting estimate'
WRITE(IOCRT,*), (2) Manually select a starting estimate'
WRITE(IOCRT,*), (3) Use previously calc Y() values as starting
estimate. A toggle. '
WRITE(IOCRT,*), (4) Change quantities of starting material only'
WRITE(IOCRT,*), (5) Recalc. with same data, pts. & quantities'
WRITE(IOCRT,*), (6) Change the reaction temperature '
WRITE(IOCRT,*), (7) Change value of fixed pressure or volume'
WRITE(IOCRT,*), (8) Change to a new system'
WRITE(IOCRT,*), (9) Exit program'
WRITE(IOCRT,*), (10) Save the last calculated result'
WRITE(IOCRT,*), (11) Save the last series of results'
WRITE(IOCRT,*), (12) Read run data from a parameter file'
WRITE(IOCRT,*), (13) Change thermodynamic data of a species'
WRITE(IOCRT,*), (14) Input non-ideal solution constants'
WRITE(IOCRT,*), (15) Select an Option: '
WRITE(IOCRT,*), NCODE = 0
NP=1
READ(*,*) KVAL1
IF (KVAL1.EQ.99) THEN
CALL TRACPRNT
GO TO 8
ELSE
CALL CHANGEDATA
ICHD=1
GOTO 193
CALL SOLN_CONSTS
GOTO 193
WRITE(IOCRT,*)' Input No. of points to be calculated (<100),'
WRITE(IOCRT,*)' allowing for variation in quantities of starting
materials:

READ(*,*) NPKT

WRITE(IOCRT,829) (TEXT(IN(J)),J=1,MIN)

829 FORMAT (IX,'Input option for ',A10,':I)
DO 902 I=1,MIN
READ(*,*,ERR=9021) KH(I)
IF ((KH(I).LE.3).AND.(KH(I).GE.1)) GOTO 902
GOTO 9020
9021 WRITE(*,*) '(Valid Options are 1, 2, and 3; please retry...'
9020 CONTINUE
903 FORMAT(IX,'Input option for ',A10,':I')
C *** Entry point for changing quantities or quantity units ****
7 DO 164 J=1, MIN
 IN = KH(J)
 GO TO (161,162,163), IN
161 WRITE(IOCRT,904) (TEXT(IN(J)),J=1,MIN)
162 WRITE(IOCRT,905) (TEXT(IN(J)),J=1,MIN)
163 WRITE(IOCRT,906) (TEXT(IN(J)),J=1,MIN)
164 CONTINUE
904 FORMAT(IX,'Input option for ',A10,':I')
905 FORMAT(IX,'Option for ',A10,':I')
906 FORMAT(IX,'Initial value & constant mole increment.
Input the initial estimate of the equilibrium composition for each species: '
1,' \$I\$ value(s) for \'$I\$ point(s):'
READ(*,*) B(J,1)
DO 160 N=2,NPKT
160 B(J,N) = B(J,1)
GOTO 164
165 CONTINUE
C *** Entry point for re-tries on convergence failure ***
39 IF (MREP .LT. 0) GO TO 761
 IF (MREP .GT. 1) GO TO 763
 BEST = 0.
 DO 762 I=1,MIN
 IF (DABS(B(J,N)) .GT. BEST) BEST = DABS(B(J,N))
 762 CONTINUE
 DO 167 I=1,MIN
 167 Y(I) = BEST
 IF (CH3A) GO TO 166
 ELSE
 GO TO 166
 CH3 CONTINUE
C *** Initial conditions...'
763 BEST = BEST/FLOAT(MS)
 DO 168 I=1,MIN
 168 Y(I) = BEST
 IF (CH3A) GO TO 166
 ELSE
 GO TO 166
 CH3 CONTINUE
C above line prevents CHOICE 3 from operation until first result is printed.
END IF
166 DO 135 M=1, MP
 YTOT(M) = 0.
 MA = MF(M)
 MB = ML(M)
 DO 135 I=MA, MB
 YTOT(M) = YTOT(M) + Y(I)
 135 CONTINUE

C**** Equilibrium was not found on previous calc.:
IF (MREP .GT. 0) GO TO 192
C ***** Entry point for Re-calculation (Menu Sel [5]):
 34 NP=0
 27 NP= NP+1
 192 DO 190 J=1, L
 B(J,NP) = 0.
 DO 194 N=I, MS
 IF (MREP .LT. 0.6) XI(N) = 0.
 IF (MREP.EQ.0.6) XI(N) = 1.E-7*LOG10(1.O+N)
 CONTINUE
 190 XI(1) = BIN(J,NP) + XI(1)
 75 NO(I) = 1
 UNDERFLG = .FALSE.
 IF (TR9) WRITE("",") ' SOL 75: call gasol, M0,MP = I,MO,MP
 CALL GASOL
 IF (MO .EQ. 0.) WRITE (IOY,121)
 WRITE (IOY,118)

118 FORMAT (/50H The equilibrium composition has not been obtained)
 MREP = MREP + 1
 IF (MREP .GE. 6) Go TO 234
 WRITE(IOY,233)
233 FORMAT (' Trying different estimated equilibrium values .../)
 GO TO 39
C --- i.e. Exit to "re-try" routine ----
C 234 CONTINUE
C *** trace quantity modification routine ***
 C Print out table even when no decent answer
 TR(10)=.TRUE.

IF (MREP .GT. 6. AND. TR(9)) TR(10)=.TRUE.
IF (MREP .GT. 6. AND. TR(9)) GOTO 64
 235 FORMAT (' Modifying starting quantities very slightly.../)
 MREP=0
 IF (.NOT.OPT12) CALL PAUSE
 IF (OPT12) GO TO 1306
 NP = NP - NPKT
 64 CH3A = .FALSE.
 ON printing first time, CHOICE 3 can operate
C if CHOICE 3 is not operative there's no change
 IF (ICHD.EQ.1) GOTO 11
 GOTO 12
11 WRITE (IOY,13)
13 FORMAT (/5H Thermodynamic values were changed while running.'/)
 WRITE (IOY,16)
 DO 14, I=1, MS
 WRITE (IOY,15) TEXT(I), HF(I), S(I), C(I,l,l)
14 FORMAT (I8,AlO,F12.2,F10.3,F10.3)
12 WRITE (IOY, 1110) T, INFNAME
C *** Interim code for "printing out table, even though calc failed" TR9
 P-PRT = PTOT
 IF (TR9) P-PRT= -13.
 TR9= .FALSE.
 TR9= .FALSE.
 WRITE (IOY, 1110) P-PRT, OUTFNAME
 1110 FORMAT (/,5H T = , F10.3,2H K, lx,'Data from : ',A30)
 1111 FORMAT (5H P = ,F10.3, 4H bar,l3X,'Results to: ',A30)
 1112 FORMAT (5H P = ,D10.3, 4H bar,l3X,'Results to: ',A30)
 1113 FORMAT (5H P = ,F10.3, 4H bar)
 1114 FORMAT (5H P = ,D10.3, 4H bar)

VGAS=0.
 DO 6401 I=MF(l), ML(I)
 VGAS=VGAS*T*R 1/PTOT
 IF (VGAS.GE.O.Ol.AND.VGAS.LT.1.D5)
 WRITE (IOY,6402) VGAS
 IF (VGAS.LT.O.O1.OR.VGAS.GE.1.D5)
 WRITE (IOY,6403) VGAS
 6401 VGAS=VGAS+Y(I)
 VGAS=VGAS+Y(I)
 IF (VGAS.GE.O.O1.AND.VGAS.LT.1.D5) WRITE (IOY, 6401) VGAS
 IF (VGAS.LT.O.O1.OR.VGAS.GE.1.D5) WRITE (IOY, 6402) VGAS
 6402 FORMAT (' V =',F10.3," liters")
 6403 FORMAT (' V =',D10.3," liters")
 IF (M0 .GT. 0.) WRITE (IOY,121)
121 FORMAT (' WARNING: System did not converge completely. Examine results carefully! ') IF (UNDERFLG) WRITE (IOY,1121)
1121 FORMAT (/I
IF (UNDERFLG) WRITE (IOY,1121)
18 FORMAT (' Starting quantities were changed slightly to allow convergence. ')
SMIDGEN=.FALSE.
185 WRITE (IOY,105)
105 FORMAT (/I
SMIDGEN=.FALSE.
1001 FORMAT (' Mixture number ',I3, ' would be considered')
1002 FORMAT (' Species no. ',I3, ' (',A10,') would be considered')
1003 FORMAT (' in the equilibrium set of phases if its free energy')
1004 FORMAT (' of formation were ',F12.1, ' Mole more negative')
1005 FORMAT (' would appear as:')
1006 FORMAT (' species Molar Activity')
C 1,11X,'Activity'
2)
1007 FORMAT (' Mixture ',I3, ' is treated as non-ideal per:')
126 FORMAT (' Mixture ',I3, ' is treated as non-ideal per:')
1261 FORMAT (G(excess) = Sum (Bij - T BTij) Xi Xj (with j.ne.i) &)
WRITE (IOY,1262) 1,2,RO(O,M),1,2,RT(O,M)
WRITE (IOY,1262) 3,1,RO(2,M),3,1,RT(2,M)
END IF
END IF
1262 FORMAT (' B(',I1,',',I1,') = ',F9.1, ' BT(',I1,',',I1,') = ',F6.2)
WRITE (IOY,1262) 1,2,RO(O,M),1,2,RT(O,M)
WRITE (IOY,1262) 3,1,RO(2,M),3,1,RT(2,M)
END IF
WRITE (IOY,1261) M-1
1261 FORMAT (G(excess) = Sum (Bij - T BTij) Xi Xj (with j.ne.i))
1262 FORMAT (' B(',I1,',',I1,') = ',F9.1, ' BT(',I1,',',I1,') = ',F6.2)
WRITE (IOY,1262) 1,2,RO(O,M),1,2,RT(O,M)
END IF
WRITE (IOY,1262) 3,1,RO(2,M),3,1,RT(2,M)
END IF
WRITE (IOY,120)(TEXT(I),XI(I),Y(I),I=M1,MS)
120 FORMAT (/(IX,AIO, 2(2X, D13.5)))
802 CONTINUE
IF (MIXN .EQ. MR) GO TO 1042
WRITE (IOY,1002) KS, TEXT(KS)
WRITE (IOY,1003)
WRITE (IOY,1004) PLUE
IF (NCODE .NE. 1) CALL PAUSE
IF (OPT12) GO TO 1306
IF (NP - NPKT) 27,8,8
C internally, Mixture "1" is the gas... but why confuse the user?
WRITE (IOY,1003)
WRITE (IOY,1004) PLUE
WRITE (IOY,1005) KQ-1
WRITE (IOY,1006)
MLBA = MF(KQ)
MLBZ = ML(KQ)
DO 1010 MLB = MLBA, MLBZ
1010 WRITE (IOY,1007)TEXT(MLB), APTCMLB)
1041 NIXT = 0
DO 1015 NLB = M1, MS
1015 IF(Y(NLB) .GT. 0) NIXT = NIXT + 1
1042 CALL HETTA
STOP
1041 NIXT = 0
DO 1015 NLB = M1, MS
1015 IF(Y(NLB) .GT. 0) NIXT = NIXT + 1
1042 CALL HETTA
STOP
1041 NIXT = 0
DO 1015 NLB = M1, MS
1015 IF(Y(NLB) .GT. 0) NIXT = NIXT + 1
1042 CALL HETTA
STOP
C Processing controlled by "run parameter file" - Menu Sel [12]

1303 CONTINUE
1304 OPEN (IPRM,FILE=PRMFNAME,STATUS='OLD',ACTION='READ')
C read and discard 1st line of Parameter File (allows column headings)
READ(IPRM,*), B(1,1) = 0.0
1305 KH(I) = 2
WRITE(IOCRT,*), (TEXT(IIN(I)), I=I,MIN)
READ(IPRM,*,END=1399)
1306 CONTINUE
V = DMINS(T-PTOT,0.0)
WRITE(IOCRT,1392), T(K), P(bar), B(I,I), I=I,NMATLS
1307 FORMAT ('Running SOLGAS under control of ',PRMFNAME)
1308 FORMAT (*,20A10)
1309 FORMAT ('Do 1305 I=1,MIN
1310 DO 1305 I=1,MIN
1311 B(I,1) = 0.0
1312 WRITE(IOCRT,*), (TEXT(IIN(I)), I=I,MIN)
1313 READ(IPRM,*,END=1399)
1314 CONTINUE
1315 V = DMINS(T-PTOT,0.0)
1316 WRITE(IOCRT,1392), T, PTOT, B(I,1), I=1,NMATLS
1317 FORMAT (*,20A10)
1318 C *** An arbitrary operational limit *****
1319 IF (YTOT(M) .GE. 1.0-10) GO TO 151
1320 M = NO
1321 YTOT(M) = 0.
1322 YTOT(M) = YTOT(M) + Y(I)
1323 IF (YTOT(M) .GE. 1.0-10) GO TO 151
1324 CONTINUE
1325 WRITE(IOCRT,*), Parameter File Name:
READ(*,91) PRMFNAME
INQUIRE(FILE=PRMFNAME,EXIST=FILEFLAG)
IF (FILEFLAG) GO TO 1303
READ(* , 9903) PRMFNAME
GO TO 1399
1326 NMATLS = MIN
1327 OPEN (IPRM,FILE=PRMFNAME,STATUS='OLD',ACTION='READ')
READ(IPRM,*) RUNNING SOLGAS under control of I,PRMFNAME
WRITE(10CRT,1391) (TEXT(IIN(I)), I=I,MIN)
READ(IPRM,*,END=1399)
DO 1305 I=I,MIN
B(I,1) = 0.0
1306 KH(I) = 2
WRITE(IOCRT,*), (TEXT(IIN(I)), I=I,MIN)
READ(IPRM,*,END=1399)
DO 1305 I=I,MIN
B(I,1) = 0.0
1307 WRITE(IOCRT,*), (TEXT(IIN(I)), I=I,MIN)
READ(IPRM,*,END=1399)
NPKT = 1
OPT12 = .FALSE.
KVALI = 6
CALL HETTA
KVALI = 5
NPKT = 1
OPT12 = .TRUE.
GOTO 1350
OPT12 = .FALSE.
CLOSE (IPRM)
WRITE(*,*)
GOTO 8
1399 CONTINUE
SUBROUTINE ABER
INCLUDE 'so130284.inc'
M = NO
YTOT(M) = 0.
DO 2 I = MA, MB
2 YTOT(M) = YTOM(M) + Y(I)
SUBROUTINE HETTA
INCLUDE 'so130284.inc'
TREF = 298.15
NTO = NCODE*6
OT0 = 0.
GOTO 82
GOTO 1350
1350 IF (M .GT. 1) GO TO 82
IF (V .GT. 0.) PTOT = R*I*YTOT(I)/V
YTOT(I) = YTOT(I)/PTOT
DO 127 I = MA, MB
127 Y(I) = Y(I)/YTOT(M)
IF (ICHS.EQ.1) CALL FACTOR
DO 141 I = MA, MB
141 AKTF(I) = AKTF(I)*VF(I)
R/M Fortran
1414 AKTF(I) = AKTF(I)*VF(I)
M/S Fortran
RETURN
END
1040ST
SUBROUTINE HETTA
include 'so130284.inc'
TREF = 298.15
NTO = NCODE*6
PT0 = 0.
GOTO 82
GOTO 1350
1350 IF (M .GT. 1) GO TO 82
IF (V .GT. 0.) PTOT = R*I*YTOT(I)/V
YTOT(I) = YTOT(I)/PTOT
DO 127 I = MA, MB
127 Y(I) = Y(I)/YTOT(M)
IF (ICHS.EQ.1) CALL FACTOR
DO 141 I = MA, MB
141 AKTF(I) = AKTF(I)*VF(I)
R/M Fortran
1414 AKTF(I) = AKTF(I)*VF(I)
M/S Fortran
RETURN
END
1040ST
IF (YMIX.EQ.0) GOTO 780
YFA = YF(MF(M))
YFB = YF(ML(M))
YFC = 0.0
IF(ML(M)-MF(M).EP.2) YFC = YF(ML(M)-1)
1
IF(IDEAL(M).EQ.1)
IF (IDEAL(M).EQ.2)
1
HMIX=VFA*YFB*(RO(0,M)+((1-2*YFA)*)RO(1,M)+RO(2,M)*)YFA
1
HMIX=RO(0,M)*YFA*YFB+RO(1,M)*YFB*YFC+RO(2,M)*YFC*YFA
HR=HR+HMIX
780 CONTINUE
DO 79 N = 1, MIN
I = IIN(N)
HP = HP + HCT(I)*XI(I)
DO 32 I = 1, MS
HT = HP + HR
WRITE (IOY,109) HP*.001, HR*.001, HT*.001
79 HR = HR - HFT(I)*XI(I)
32 HR = HR + HFT(I)*Y(I)
109 FORMAT (/,$20H Pre-heat = ,F10.3, 3H kJ/, $20H Heat of reaction = ,F10.3, 3H kJ/, $20H Total heat = ,F10.3, 3H kJ/) 999 RETURN
END
FUNCTION HEAT (NM, T-I NI T, T-FI NAL,M,ENTROPY)
C
Calculates molar enthalpy change from T(init) to T(final) for a single species. Heat difference is returned with the function call; Entropy difference is also found and is returned via parameter list.

INCLUDE 'so1302B4.inc'
INTEGER EQN
SIGN=1.0
Ti=T_INIT
Tf=T_FINAL
IF (Ti.LT.Tf) GOTO 1100
ENDIF=0
HEAT=0.
S_CUM=0.
1100 EQN=EQN+1
IF (EQN.EQ.NM) GOTO 1102
ENDIF=EQN+1
IF (END.EQ.0) GOTO 1102
1102 TTI=Tf
ENDIF=EQN+1
IF (END.EQ.0) GOTO 1102
ENDIF=EQN+1
IF (EN.EQ.0) GOTO 1102
ENDIF=EQN+1
END
FUNCTION CPINT(N,I,J,TO,TI)
C 1100 HEAT = HEAT + CPINT(1,M,EQN,TTI,TTF)
S_CUM = S_CUM + CPINT(2,M,EQN,TTI,TTF)
Ti=TTF
IF (Ti.LT.Tf) GOTO 1101
HEAT=SIGN*HEAT
ENTROPY=SIGN*S_CUM
RETURN
END
FUNCTION CPINT(N,I,J,TO,TI)
C H : Select dH or dS integration of Cp equation
C I : species #
C J : Cp Eqn ID #
C TO and TI : temperature integration limits
INCLUDE 'so1302B4.inc'
C MXHS/CPHOLD/T2,T3,T4,TA,TB,TC,TD,TE,TF,TG
C Re-calculate Temperature polynomial terms only when they change...
IF (TO .NE. OTO .OR. TI .NE. OTI) GO TO 3
GO TO (1,2) N
3 OTO = TO
OTI = TI
T2 = TO+TI
T3 = TO*TI
T4 = T3*T3
TA = TI+TO
TB = TA/T3
TC = TA*(T2*2-T3)/3.
TD = DLOG(TI/TO)
TE = TA/T3
TF = TB/4
TG = TC/(3*TA)
GO TO (1,2) N
C Enthalpy calculation:
1 CPINT = C(I,J,1)*TA+C(I,J,2)*TB+C(I,J,3)*TC+C(I,J,4)*TE+
C Entropy calculation:

\[2 \text{CPINT} = C(I,J,2) \ast TA + C(I,J,3) \ast TB + C(I,J,1) \ast TD + C(I,J,4) \ast TF + SC(I,J,5) \ast TG \]

RETURN

END

SUBROUTINE PAUSE

24 IF (L.EQ.10) GOTO 242
241 WRITE(IODEVICE,201) 'Comp.', I-ELEM, DEFECT
GOTO 25
242 WRITE(IODEVICE,20) EL(I-ELEM), DEFECT
25 CONTINUE

20 FORMAT (' ', 'AB', ' ', ',D10.3)
201 FORMAT (' ', 'AS', ' ', ',D10.3)

RETURN

END

SUBROUTINE CHANGEDATA

INCLUDE 'sol30284.inc'

CHARACTER*1 Q
WRITE(*,1)
1 FORMAT ('Paused -- Push RETURN to continue')
READ(*,2) Q
WRITE(*)
2 FORMAT (A)
READ(*,*)
RETURN

END

SUBROUTINE CONSERVATION_OF_MASS(IODEVICE)

INCLUDE 'sol30284.inc'

DIMENSION COM(10,2)
LOGICAL TITLEPRT
TITLEPRT=.FALSE.
DO 11 I-ELEM=1,IO
COM(I_ELEM,1)=O.O
11 CONTINUE
DO 25 I-ELEM=I,L
DO 10 I-MATL=I,MS
COM(I_ELEM,1)=COM(I_ELEM,1)+A(I-MATL,I_ELEM)*XI(I-MATL)
COM(I_ELEM,2)=COM(I_ELEM,2)+A(I-MATL,I_ELEM)*Y(I_MATL)
10 CONTINUE
DO 25 I-ELEM=I,L
IF (COM(I_ELEM,1).EQ.COM(I_ELEM,2)) GOTO 25
DEFECT=COM(I_ELEM,2)/COM(I_ELEM,1)-1.0
IF (ABS(DEFECT).LT.1.00-06) GOTO 25
IF (TITLEPRT) GOTO 24
WRITE(IODEVICE,*)
WRITE(IODEVICE,*) 'Warning: Mass balance not preserved in this run'
WRITE(IODEVICE,*) 'Component | Mass Balance Fractional Error'
TITLEPRT=.TRUE.
RETURN

SUBROUTINE CHANGEDATA

INCLUDE 'sol30284.inc'

WRITE(*,*) 'Species present in the current data set:
WRITE(*,10) (I, TEXT(I), I = MS)
WRITE(*,*)
WRITE(*,*) 'Select property you wish to change:
READ(*,*) KHOZE
GO TO (30,40,50), KHOZE
30 WRITE(*,31) TEXT(ISPECIES), HF(ISPECIES)
31 FORMAT(/,' The heat of formation of ',A10,' is ',F12.0,' J/mol.',/)
WRITE(*,*) 'Input a new value:
READ(*,*) DIF-VAL
HF(ISPECIES)=DIF-VAL
GOTO 5
40 WRITE(*,41) TEXT(ISPECIES), S(ISPECIES)
41 FORMAT(/,' The entropy of ',A10,' is ',F10.3,' J/mol K.',/)
WRITE(*,*) 'Input a new value:
READ(*,*) DIF-VAL
S(ISPECIES)=DIF-VAL
GOTO 5
50 WRITE(*,51) TEXT(ISPECIES), C(ISPECIES,1)
51 FORMAT(/,' Cp "A" value of ',A10,' is ',F10.3,' J/mol K.',/)

11 Input a new value:

READ (*,*) DIF_VAL
ISPECIES(1,1) = DIF_VAL
GOTO 5
END

[FILE GAS302B4.FOR]

SUBROUTINE GASOL

INCLUDE 'SOL302B4.INC'

A source file for SOLGAS, version 3.02 (2 to 4)

DIMENSION BO(20), F(99), IAS(20), ISOL(20), LX(99), NSUM(99),
 SGPI(20), R(20,21), YTOT(20), TX(99)

IVARJMAX = 20
DIFMMAX = 1.0
SLAMADJ = 1.0
FIB2 = .TRUE.
MX = 0
BMAX = 0.
DO 111 I = 1, MS

DO 183 J = 1, L
 IF (DABS(B(J, NP)) .GT. BMAX) BMAX = DABS(B(J, NP))

183 BO(J) = E(J, NP)
BMAX = BMAX/FLOAT(MS)

IS = -1
NG = 0
55 ISUM = 0

IF (NS .LT. M1) GO TO 47
DO 52 I = M1, MS

IF (Y(I) .EQ. 0.) GO TO 52
MSA = MSA + 1
ISOL(MSA) = I
ISUM = ISUM + 2**(1 + MP - M1)

52 CONTINUE

47 MPA = 0
NG = NG + 1

IF (NG .EQ. 100) NG = 1
NSUM(NG) = ISUM
YSUM = 0.
DO 152 M = 1, MP

IF (YTOT(M) .EQ. 0.) GO TO 152
MPA = MPA + 1
IFAS(MPA) = M
NSUM(M) = NSUM(M) + 2**M
YSUM = YSUM + YTOT(M)

100 CONTINUE

IF (NG .NE. IS + 2) DO 148 K = 2, NG

148 CONTINUE

152 CONTINUE

IF (NSUM(NG) .LT. IS .OR. MPA + MSA .GT. I) GO TO 59

GO TO 69

86 NG = NG - 1
NG = NG + 1
DO 154 N = 1, MPA
M = IFAS(N)

154 YTOT(M) = 0.

ISUM = 0

MPA = 1

IF (M .EQ. 0) GO TO 73

DO 68 N = 1, MSA
I = ISOL(N)

68 Y(I) = 0.

MSA = 0

73 IF (IS .EQ. 1) GO TO 74

IT = IS

61 M = 0

71 M = M + 1

IF (2**M .LE. IT) GO TO 71

IF (M .GT. MB) GO TO 57
MPA = MPA + 1

IFAS(MPA) = M

YTOT(M) = 1.

MA = MF(M)

MB = ML(M)

DO 150 I = MA, MB

IF (NS .LE. IABS(NSUM(NG))) NG = NG + 1

IF (NG .EQ. 100) NG = 1

NSUM(NG) = ISUM

150 CONTINUE

GO TO 136

57 I = M + ML(MP) - MP

NG = M

IF (I .GT. MS) GO TO 141

IF (NS .EQ. 0) GO TO 59

M = MSA + 1

ISOL(MSA) = I

ISUM = ISUM + 2**(M - 1)

YSUM = YSUM

136 IT = IT - 2**(M - 1)

IF (IT .LT. 1) GO TO 61

IF (MPA + MSA .GT. I) GO TO 59

74 IFAS(1) = 1

IF (IS .LE. IABS(NSUM(NG))) NG = NG + 1

IF (NG .EQ. 100) NG = 1

NSUM(NG) = IS

NSUM(NG) = NSUM(NG - 1) = IABS(NSUM(NG - 1))

69 IF (NG .EQ. 1) GO TO 129

DO 148 K = 2, NG
IF (NSUM(NG) .EQ. NSUM(K-1)) GO TO 86

148 CONTINUE
IF (NG .EQ. 2) GO TO 129
III = NSUM(NG-2)
MSUM = III
IF (MSUM.LT.0.OR.NSUM(NG).EQ.NSUM(NG-1).LT.0) GO TO 129
NSUM(NG-2) = MSUM
IF (NSUM(NG) .EQ. MSUM) GO TO 86

129 CONTINUE
IF (TR(3)) WRITE (*,*) 'Entering R matrix'
DO 9 N = 1, MPA
LL = L + N
M = IFAS(N)
MA = MF(M)
MB = ML(M)
IF (TR(3)) .AND. YTOT(1) .GT. 0.) THEN
WRITE (*.558) M,Y(MA), Y(MB), YTOT(M)
ELSE
GO TO 1292
END IF
TRAC 1

1292 IF (YTOT(M) .GT. 0.) GO TO 130
DO 126 I = MA, MB
AKT(I) = 0.
AKTF(I) = 1.
Y(I) = 0.
126 CONTINUE
GO TO 142

130 DO 145 I = MA, MB
IF (Y(I) .GT. BMAX) Y(I) = BMAX
145 CONTINUE

131 IF (NO(1) .EQ. 1 .AND. Y(I) .LT. 1.D-8) Y(I) = 1.D-8
45 LX(I) = 0
MO = M
CALL ABER
IF (YTOT(M) .EQ. 0.) GO TO 47

142 CONTINUE

558 FORMAT (' Mixture ',12,3(2X,D13.5))
LS1 = L + MPA + MSA
LS = LS1 - 1
LS2 = LS + 2

134 DMIN = 1.0-6
IVAR = 0
IVARJ = ML(1) - MS
16 DO 6 J = 1, LS1
DO 6 K = J, LS2
6 R(J,K) = 0.
CONTINUE

IF(TR(1)) THEN
 GO TO 556
ELSE
 GO TO 557
END IF

IF (TR(I)) THEN
 GO TO 556
ELSE
 GO TO 557
END IF

DO 555 I = 1,LSl
 WRITE (*,667) (R(I,J),J = 1,LSl)
END DO
WRITE (*,*) 'Done writing matrix'

IF (ELMAX .GT. 0.) GO TO 36
IF (K .GT. L) GO TO 10
IF (TR(5)) WRITE(*, *) In GASOL, Label 11+2, K,BO(K), K, BO(K)
 IF (BO(K)) 59,10,59
 IF (MROW .EQ. K) GO TO 13

DO 15 N = K, LS2
 RADBYT = R(J,K)/R(K,K)
 R(J,K) = R(J,K) - RADBYT*R(K,K)
 KA=K+I
 DO 46 J = KA, LS1
 RKVOT = R(J,K)/R(K,K)
 R(J,N) = R(J,N) - RKVOT*R(K,N)
 CONTINUE

DO 20 N = 1, LSI
 K = LS2 - N
 IF (R(K,K) .NE. 0.) GO TO 62
END DO

PI(K) = 0.
K = K - L - MPA
DO 58 J = 1, KA
 R(J,L2) = R(J,L2) - PI(K)*R(J,K)
END DO

DO 70 J = 1, LS1
 IF (DABS(PI(J)) .LT. 1.D-8) GO TO 70
 IF (DABS(OPI(J)/PI(J) - 1.) .GT. DMIN) GO TO 65
CONTINUE

NR = 0
IF (NG .EQ. 1) GO TO 155
DO 157 K = 2, NG
 IF (NSUM(NG) .EQ. NSUM(K-1)) NR = NR + 1
END DO
155 CONTINUE

PIXMAX = 0.
144 IF (M .EQ. 1) YFTOT(M) = YFTOT(M)/PTOT
 IF (YFTOT(M) .GT. PIXMAX) PIXMAX = YFTOT(M)
 IF (YFTOT(M) .EQ. PIXMAX) KQ = M
144 YF(I) = 0.

DO 792 J = MA,MB
 YX(I) = YF(I)
 AKT(I) = 0.
END DO
CONTINUE
MA = MF(KQ)
MB = ML(KQ)
DO 787 I = MA, MB
YM(I) = YF(I)
YF(I) = 0.
AKT(I) = 0.
CONTINUE
PLUM = 0.
PLUG = 0.

PLUG = PLUG + DLOG(APT(1)) + G(I)
DO 784 J = 1, L
IF(A(1,J) .EQ. 0) GO TO 784
PLUM = PLUM + A(I,J) * PI(J)
CONTINUE

DO 153 I = MA, MB
Y(I) = YSUM*YX(I)/YF(TOT(KA))
CONTINUE

DO 93 IVARJ = 0
GO TO 66
65 DO 60 J = 1, LS1
60 OPI(J) = PI(J)
66 SLAM = 1.
RESID1 = 0.
RESID2 = 0.
DO 112 N = 1, MPA
L1 = L + N
M = IFASCN
MA = MF(M)
MB = ML(M)
DO 12 I = MA, MB
IF (Y(I) .EQ. 0.) GO TO 12
PIA = F(I) - PI(L1)
DO 19 J = 1, L
19 PIA = PIA - A(I,J)*PI(J)

787 CONTINUE
PLUM = 0.
PLUG = 0.

IF(KQ.LE.0).OR.(KQ.GT.20)) WRITE(*,'*') 'Bad Mix No. @ 143!' KQ
Next Line is a Bandaid fix to an array bounds error in MF and ML.

IF((KQ.LE.0).OR.(KQ.GT.20)) KQ=1
MA = MF(KQ)
MB = ML(KQ)
DO 783 I = MA, MB
APT(I) = AKT(I)*YM(I)
IF(APT(I) .LE. 0)
GO TO 783
PLUG = PLUG + DLOG(APT(I)) + G(I)
DO 784 J = 1, L
IF(A(I,J) .EQ. 0)
GO TO 784
PLUM = PLUM + A(I,J) * PI(J)
CONTINUE

DO 158 M = 1, HP
IF (YTOT(M) .GT. 0. .OR. YFTOT(M) .LE. DIFM) GO TO 158
KA = M
DIFM = YF(TOT(M))
CONTINUE

IF (DIFM .EQ. DIFMMAX .AND. INEW .EQ. 0)
GO TO 54
IF (DIFM .EQ. DIFMMAX .AND. INEW .EP. 1)
GO TO 59
INES = 0
DIFM = DIFMMAX

DO 159 NSUM(KG) = -NSUM(KG)
YTOT(KA) = 1.
MA = MF(KA)
MB = ML(KA)

DO 158 M = 1, HP
IF (YTOT(M) .GT. 0. .OR. YFTOT(M) .LE. DIFM) GO TO 158
KA = M
DIFM = YF(TOT(M))
CONTINUE

IF (DIFM .EQ. DIFMMAX .AND. INEW .EQ. 0) GO TO 138
IF (DIFM .EQ. DIFMMAX .AND. INEW .EQ. 1) GO TO 59
INES = 1

IF (NR .EQ. 0) GO TO 159
NR = NR - 1
YFTOT(KA) = DIFM
GO TO 145

159 CONTINUE
IF (NR .EQ. 0) GO TO 138
INES = 1

IF (DIFM .EQ. DIFMMAX .AND. INEW .EQ. 0) GO TO 138
INES = 1

IF (DIFM .EQ. DIFMMAX .AND. INEW .EQ. 1) GO TO 59
INES = 1

INEX = 1
IF (NR .EQ. 0) GO TO 159
NR = NR - 1
YFTOT(KA) = DIFM
GO TO 145

158 CONTINUE
IF (DIFM .EQ. DIFMMAX .AND. INEW .EQ. 0) GO TO 138
INES = 1

IF (DIFM .EQ. DIFMMAX .AND. INEW .EQ. 1) GO TO 59
INES = 1

153 CONTINUE
GO TO 47
138 IF (MS .LT. M1) GO TO 93
DIFM = 0.
COMAX = -1.0D60
DO 54 I = M1, MS
IF (NO(I) .EQ. 0 .OR. Y(I) .GT. 0.) GO TO 54
PIA = -G(I)
DO 56 J = 1, L
56 PIA = PIA + A(I,J)*PI(J)
IF (PIA .GT. COMAX) COMAX = PIA
IF (COMAX .EQ. PIA) KS = I
KA = I
DIFM = PIA
CONTINUE
SLUM = 0.
SLUG = C(KS)
DO 687 J = 1, L
IF(A(KS,J) .EQ. 0)
GO TO 687
SLUM = SLUM + AKS,J * PI(J)
CONTINUE
SLUS = SLUM - SLUM
SBLUE = R*J*PI(SLUS)
IF (DIFM .EQ. 0.) GO TO 93
Y(KA) = YSUM
GO TO 55

93 IVARJ = 0
GO TO 66
65 DO 60 J = 1, LS1
60 OPI(J) = PI(J)
66 SLAM = 1.
RESID1 = 0.
RESID2 = 0.
DO 112 N = 1, MPA
L1 = L + N
M = IFASCN
MA = MF(M)
MB = ML(M)
DO 12 I = MA, MB
IF (Y(I) .EQ. 0.) GO TO 12
PIA = F(I) - PI(L1)
DO 19 J = 1, L
19 PIA = PIA - A(I,J)*PI(J)
YX(I) = PIA*Y(I)
IF (DABS(PIA) .GT. SLAM) SLAM = DABS(PIA)
IF (N .EQ. 1) GO TO 12
IF (N .EQ. MPA) RESID1 = RESID1 + DABS(YX(I))
IF (N .EQ. MPA) RESID2 = RESID2 + YX(I)
12 CONTINUE

IF (SLAM .GT. 1.) SLAM = 0.999*(SLAM - 0.5)/(SLAM*SLAM)
IF (MSA .EQ. 0) GO TO 72
IFTR(2)) WRITE(*,*)'Exam. solids at DO 53, SPECIES, Y(), PIA(I), YSUM.'

DO 53 N = 1, MSA
 I = ISOL(N)
 K = L + MPA + N
 IF (PI(K) .LT. 0.) L1 = -1
 IF ((IVARJ .GT. 0).AND. PI(K).LT.-Y(I).AND.-PI(K)/YSUM .GT. 1.D8) GO TO 99
 Y(I1 = DABS(PI(K))
 IFTR(2)) WRITE(*,666) TEXT(I1, Y(I), PIA(I)), YSUM
53 CONTINUE

72 YSUM = 0.
IF (RESID1 .EQ. 0.) GO TO 30
IF ((RESID1 - DABS(RESID2)) .LT. 1.0-6 .AND. RESID2 .LT. 0.1) GO TO 25
IF (((FIBI) .AND. (.NOT. FIB2) .AND. SLAM .EQ. 1.) .OR.
 (NO(I) .EQ. 0 .OR. Y(I) .GT. 0.1)) GO TO 149
 Y(I) = YTOT(M)
128 YSUM = YSUM + YTOT(M)

DO 149 N = 1, MPA
 M = IFAS(N)
 MA = MF(M)
 MB = ML(M)
 IFTR(6)) WRITE(*,*)'GASOL at DO 3, TEXT(I), YX(I), Y(I)
 IF (Y(I) .EQ. 0.) GO TO 3
 IF (DABS(YX(I))/Y(I) .GT. 1.D-9) GO TO 16
149 CONTINUE

88 DO 149 N = 1, MPA
 M = IFAS(N)
 YF1 = YF(MF(M))
 CALL XBER

133 DO 149 I = 1, M
 IF (NO(I) .EQ. 0 .OR. Y(I) .GT. 0.1) GO TO 149
 Y(I) = YTOT(M)*YF1
149 CONTINUE

C *** An arbitrary operational limit *****
IF (Y(I) .LT. 1.D-10 .OR. LX(I) .EQ. 1.) Y(I) = YTOT(M)*PTOT

LX(I) = 1
GO TO 134
149 CONTINUE

141 IF (IVARJ .EQ. IVARJMAX) M0 = 0

NIS
DO 151 I=1,MS
151 Y(I) = Y(I)
RETURN
END

[FILE IO_30284.FOR]

SUBROUTINE READFILE
INCLUDE 'sol30284.inc'
C Array Max Species = 99
C Limits: Max Elements = 10
C Max Start Mat= 20
C Max mixtures = 20
C Max size of data line = 500 characters
C Min # of gases = 1
CHARACTER CHR500(500)*1, STR5*5, CHR10(10)*1, STR10*10, TITLESTR*80
1,STR500*500, STR2*2, STR30*30, TEMP-STR*78, CHR30(30)*1,
2,STR30*30
EQUIVALENCE (CHR10,STR10),(STR500,CHR500(1),STR5,STR2,STR3),
1,(CHR500(6),TITLESTR), (CHR500(3),TEMP-STR), (CHR30,STR30),
2,(S30,C30),(C8,E8)
INTEGER tmp,IP,IK,OLDMIXNO
DOUBLE PRECISION X(7,6),SUBVAL
C Initialize and zero variables:
maxele=10
maxstmat=20
maxmix=20
maxsp=99
tmp=3
MIN=0
OLDMIXNO=1
MP=1
MR=0
L=0
old_type='G'
DO 111 I=1,maxele
111 EL(I)='
DO 112 I=1,maxsp
112 J=I,maxele
112 A(I,J)=0
DO 113 I=1,maxmix
113 ML(I)=0
C Open I/O units
OPEN(unit=IN,file=INFNAME,status='old',mode='read')
OPEN(unit=tmp,STATUS='SCRATCH',ACTION=READWRITE)
C OPEN(unit=tmp,STATUS='SCRATCH',RECL=500)
C OPEN(unit=IN,file=INFNAME>Status='OLD')
C OPEN(unit=tmp,STATUS='SCRATCH')

C Process TITLE line
READ(IN,2) STR500
1 FORMAT (500A1)
2 FORMAT (A500)
3 FORMAT (IX,500A1)
DO 74 K=1,500
74 IF (CHR500(K).EQ.'T',OR.CHR500(K).EQ.'T') CHR500(K)=
IF (STR5.EQ.'TITLE') GOTO 709
WRITE(*,*) 'First line of data file must begin with "TITLE":'
GOTO 7776
709 TITLE=TITLESTR
732 WRITE(*,*) 'No properly formatted starting material temperature li
1ne found in data file.'
GOTO 7777
75 IF (CHR500(3).EQ.'=')
C Species line loop
DO 999 MS=1,maxsp+1
read(IN,2,END=732) STR500
C READ(IN,1) (CHR500(I),I=1,500)
73 DF 73 DO 73 K=1,500
73 IF (CHR500(K).EQ.'=') CHR500(K)=
IF (STR5.EQ.'=')
GOTO 775
77 TSTART=CHR500(3).
C Remains to be done
C Process Comments and Temperature line:
710 CONTINUE
READ(IN,2,END=732) STR500
1 FORMAT (500A1)
2 FORMAT (A500)
3 FORMAT (IX,500A1)
DO 73 K=1,500
73 IF (CHR500(K).EQ.'=')
C Species line loop
DO 999 MS=1,maxsp+1
read(IN,2,END=16) STR500
C READ(IN,1) (CHR500(I),I=1,500)
DO 15 K=1,500
15 WRITE(*,*) 'Error encountered reading the input file'
GOTO 7776
20 CONTINUE
R/M Fortran 60 IF (CHR500(K).EQ.' ') CHR500(K)=
VAX 1040ST
IF (CHR500(K).EQ. ') GOTO 61
C Process "species type"
IF (CHR500(K).NE. '**) GOTO 613
K=K+1
MIN=MIN+1
IF (MIN.LE.maxstmat) GOTO 6121
WRITE(*,*) 'Too many starting materials; only 20 are allowed.'
GOTO 7776
6121 IIN(MIN)=MS
6122 IF (CHR500(K).NE. ') GOTO 613
K=K+1
IF (K.LT.500) GOTO 6122
WRITE(*,*) 'Species data expected after "**".'
GOTO 7776
613 CONTINUE
cur_type=CHR500(K)
if (cur_type.EQ.old_type) GOTO 615
if (((cur_type.EQ.'M').AND.(old_type.EQ.'G')) goto 615
if (((cur_type.EQ.'P').AND.(old_type.EQ.'G')) goto 615
if (((cur_type.EQ.'P').AND.(old_type.EQ.'M')) goto 615
WRITE(*,*) 'Invalid Species type or sequence (G...M...P)'
GOTO 7776
615 old_type=cur_type
if (cur_type.EQ. 'G') ML(1)=ML(1)+1
if (cur_type.EQ. 'P') MR=MR+1
IF (cur_type.NE.'M') GOTO 62
J=0
STR10='1
616 K=K+1
IF (CHR500(K).EQ. ') GOTO 616
6161 J=J+1
CHR10(J)=CHR500(K)
K=K+1
IF (CHR500(K).NE. ') GOTO 6161
IF (J.LE.0) GOTO 6181
IF (((CHR10(J).GE.0).AND.(CHR10(J).LE.'9')) GOTO 618
6181 WRITE(*,*) 'Species data expected after "**".'
GOTO 7776
618 REWIND(tmp)
WRITE(tmp,'*') STR10
REWIND(tmp)
READ(tmp,'*') Mixno
GOTO 619
619 Mixno=Mixno+1
K=K-1
IF (Mixno.EQ.OLDMIXNO) GOTO 621
IF (Mixno-OLDMIXNO.EQ.1) goto 620
WRITE(*,*) 'Mixture numbers are out of sequence'
GOTO 7776
620 OLDMIXNO=Mixno
MP=mixno
IF (MP.LE.maxmix) GOTO 621
WRITE(*,622) maxmix
622 FORMAT ('Too many mixtures; up to ',13,' are allowed.')
GOTO 7776
621 ML(MP)=ML(MP)+1
62 CONTINUE
K=K+1
IF (CHR500(K).NE. ') GOTO 62
K=K+1
IF (CHR500(K).EQ. ') GOTO 63
C Process "name"
63 STR30='1
J=1
64 CONTINUE
IF (CHR30(J).EQ. ') GOTO 64
IF (CHR3O(J).GT.'Z') GOTO 666
IF (CHR3O(J).LT.'A') GOTO 666
EA='1
C8(1)=CHR30(J)
IP=IP+1
IF (CHR30(IP).EQ. ') GOTO 900
IF (CHR30(IP).GT.'Z') GOTO 666
IF (CHR30(IP).LT.'A') GOTO 666
EB='1
C8(1)=CHR30(IP)
IP=IP+1
IF (CHR30(IP).GT.'z') GOTO 110

C Formula Reading section

IF (Mixno.EQ.OLDMIXNO) GOTO 621
IF (Mixno-OLDMIXNO.EQ.1) goto 620
WRITE(*,*) 'Mixture numbers are out of sequence'
GOTO 7776
620 OLDMIXNO=Mixno
MP=mixno
IF (MP.LE.maxmix) GOTO 621
WRITE(*,622) maxmix
622 FORMAT ('Too many mixtures; up to ',13,' are allowed.')
GOTO 7776
621 ML(MP)=ML(MP)+1
62 CONTINUE
K=K+1
IF (CHR500(K).NE. ') GOTO 62
K=K+1
IF (CHR500(K).EQ. ') GOTO 63
C Process "name"
63 STR30='1
J=1
64 CONTINUE
IF (CHR30(J).EQ. ') GOTO 64
IF (CHR3O(J).GT.'Z') GOTO 666
IF (CHR3O(J).LT.'A') GOTO 666
EA='1
C8(1)=CHR30(J)
IP=IP+1
IF (CHR30(IP).EQ. ') GOTO 900
IF (CHR30(IP).GT.'Z') GOTO 666
IF (CHR30(IP).LT.'A') GOTO 666
EB='1
C8(1)=CHR30(IP)
IP=IP+1
IF (CHR30(IP).GT.'z') GOTO 110
IF (CHR30(IP).LT.'a') GOTO 110
CP(2)=CHR30(IP)
IP=IP+1

C process subscript
110 CONTINUE
S30=''
IK=0
120 CONTINUE
IF (CHR30(IP).GT.'9') GOTO 130
130 CONTINUE
IF (IK.GT.0) GOTO 140
SUBVAL=1.0
GOTO 150

C evaluate subscript
140 CONTINUE
IF (IK.LT.0) GOTO 150
SUBVAL=1.0
GOTO 150

C Load into table
IF(L.eq.0) GOTO 211
200 DO 210 I=1,L
IF (E8.EQ.EL(I)) GOTO 220
210 CONTINUE
211 CONTINUE
L=L+1
IF (L.LE.maxele) GOTO 219
WRITE(*,*,SUBVAL)
GOTO 7776
219 EL(L)=E8
I=1
220 A(MS,I)=SUBVAL
IF(IP.LT.30) GOTO 101
900 CONTINUE
GOTO 67

C Error...
666 CONTINUE
WRITE(*,*) STR30
WRITE(*,*) (' ',I=2,IP),''
WRITE(*,*) 'Illegal formula format'
GOTO 7777

67 K=K+1
IF (CHR500(K).EQ.' ') GOTO 67

C Now should be positioned on numeric fields; 1st blank out comments
J=501
DO 68 I=K,500
IF (CHR500(I).NE.';') GOTO 68
J=1
GOTO 69
68 CONTINUE
69 CONTINUE
IF (J.LT.501) GOTO 695
WRITE(*,*) 'Data in each species'' line must end in a semicolon'
GOTO 7776

695 DO 70 I=J,500
70 CHR500(I)=''
71 CONTINUE

DO 72 I=1,7
DO 70 J=1,6
72 CHR500(I)=''
71 CONTINUE

DO 95 J=1,6
DO 951 I=1,3
DO 951 J=1,6
951 IF (X(I,J).EQ.0.999999999999D-99) X(I,J)=0.0
95 CONTINUE
K=0
DO 95 J=1,6
DO 95 I=1,3
95 IF (XI(J).NE.0.999999999999D-99) K=J
DO 951 J=1,6
DO 951 I=1,7
951 IF (XI(J).EQ.0.999999999999D-99) XI(J)=0.0
IF (K.NE.0) GOTO 96
78 WRITE(*,*) 'Thermo data not properly read for species ''
1 TEXT(MS),'''
GOTO 7776
96 NOM(MS)=K
HF(MS)=XI(1,1)
S(MS)=XI(2,1)
DO 97 J=1,K
97 CONTINUE
IF (J.EQ.1) GOTO 971
HOM(MS,J-1)=X(1,J)
TOM(MS,J-1)=X(2,J)
971 DO 97,i=1,5
97 C(H,M,J) = X(I+2,J)
999 CONTINUE
WRITE (*,992) MaxSp
GOTO 7776
C File has been read; do summary report and bookkeeping

16 MS=MS-1
C this should always be reached on an "EOF" signal
IF (MP.EQ.1) GO TO 146
DO 132 M=2,MP
MF(M) = ML(M-1) + 1
ML(M) = ML(M-1) + ML(M)
132 CONTINUE
146 M1 = ML(MP) + 1
MF(1) = 1
IF (MS.EQ.(ML(MP)+MR)) GOTO 147
WRITE(*,*) 'Accounting Error! ',MS,'>','ML(MP)+MR'
GOTO 7776
147 CONTINUE
IF (ML1.GT.0) GOTO 148
WRITE ('*','*') 'The data set contains no gaseous species. At least one gas must be'
WRITE ('*','*') 'included to support the specified pressure. Revise data set and rerun.'
GOTO 7777
148 CONTINUE
DO 33 I = 1, MS,
XI(I) = 0,
DO 33 J = 1, L,
33 AO(I,J) = A(I,J)
C "Header" information
DO 9991 IOX=IOCRT,IOUT
WRITE(IOX,'*') TITLE
WRITE(IOX,'*') MR,MP
DO 9991 M=1,MP
WRITE (IOX,251) (ML(M)-MF(M)+1),M
9991 CONTINUE
251 FORMAT (1X,12,' = No. of Species in Mixture #',12)
998 CLOSE(IN)
CLOSE (tmp)
RETURN
C Error encountered... abort this file...
7776 WRITE(*,*)' Offending data line is:'
WRITE(*,100) (CHR(IO), I=1,500)
100 FORMAT (1X,150A1, ' I ')
FILEFLAG=.TRUE.
WRITE(*,*)
FILEFLAG=.FALSE.' Until corrected, SOLGAS cannot use the file: ',INFNAME
CLOSE(OUT)
GOTO 998
END
SUBROUTINE DOF
INCLUDE 'S01302B4.inc'
LOGICAL ZERO
C A source file for SOLGAS, version 3.02
C Checks for linear independence of chemical formulae in the SOLGAS
C input data set; revises "elements" and formulae if needed.
C
DIMENSION A1(99,10),CONV(10,10)
maxele=10
IOCRT=6
IOUT=7
DO 410 I=1,maxele
DO 410 J=1,maxele
CONV(I,J)=0.0
410 CONTINUE
DO 420 NCMP = 1, MS
DO 424 NELE = 1, L
IF (AO(NCMP,NELE).EQ.O) GOTO 424
NELE-CNT = NELE-CNT+I
LAST-ELE = NELE
CONTINUE
IF ((NELE-CNT.EQ.1).AND. (A(NCMP,LAST_ELE).NE.0)) GOTO 426
424 CONTINUE
CHECK FOR ELEMENTS
DO 420 NCMP = 1, MS
NELE_CNT = 0
DO 424 NELE = 1, L
IF (AD(NCMP,NELE).EQ.0) GOTO 424
NELE_CNT = NELE_CNT+1
LAST_ELE = NELE
424 CONTINUE
IF ((NELE_CNT.EQ.1).AND. (A(NCMP,LAST_ELE).NE.0)) GOTO 426
426 CONTINUE
GOTO 428
CONTINUE
NCC = NCMP
N_INDEP = N_INDEP + 1
DO 430 NELE2 = 1, L
 CONV(N_INDEP, NELE2) = A(NCC, NELE2)
 DO 432 IC = 1, MS
 A(IC, N_INDEP) = A(IC, LAST_ELE)
 A(IC, LAST_ELE) = 0.0
 CONTINUE
432 CONTINUE
420 CONTINUE
C END of CHECK FOR ELEMENTS
NCC = 0
422 IF (NCC .GE. MS) GOTO 440
424 IF (NCC .GE. MS) GOTO 450
NCC = NCC + 1
C BEGIN NEXT COMPONENT
C BEGIN Find non-zero species
476 CONTINUE
 DO 474 I = 1, L
 IF (ABS(A(NCC, I)) .LE. 1.E-6) GOTO 474
 ZERO = .FALSE.
 NZE = I
 CONTINUE
474 CONTINUE
477 IF (ZERO) GOTO 486
C BEGIN ADD TO COMPONENT LIST
N_INDEP = N_INDEP + 1
DO 484 NELE = 1, L
 CONV(N_INDEP, NELE) = A(NCC, NELE)
 A(NCC, N_INDEP) = 1.0
486 CONTINUE
450 CONTINUE
NCS = NCC + 1
C END of NEXT COMPONENT
488 IF (NCC .GT. MS) GOTO 490
 RATIO = A(NCS, NZE) / A(NCC, NZE)
 DO 492 J = 1, L
 A(NCS, J) = A(NCS, J) * RATIO * A(NCC, J)
 A(NCC, N_INDEP) = RATIO
 NCS = NCS + 1
 GOTO 490
490 CONTINUE
GOTO 422
440 CONTINUE
C ***** END of Main process, BEGIN Results Output
C
C WRITE (I0CRT, 550) L, N_INDEP
C WRITE (OUT, 550) L, N_INDEP
550 FORMAT(1X, I2, ' = No. of Elements', /
 x, 1X, I2, ' = No. of Linearly Independent Components', /)
 IF (L, NE, N_INDEP) GOTO 560
 DO 557 I = 1, MS
 DO 558 J = 1, MAXELE
 A(I, J) = A(I, J)
 GOTO 510
557 A(I, J) = A0(I, J)
560 CONTINUE
GOTO 510
C ****** END of Main process, BEGIN Results Output
C
C WRITE(I0CRT,*) Converting to Linearly Independent Components per'
RTT = Rj*T
I1 = MF(M0)
IL = ML(M0)
MIXSPC = IL-I1
C Re-normalize YF to estimate mole fraction

XSUM = 0.0
DO 101 J=0,MIXSPC
 XIN(J) = DMAX1(DMIN1(YF(II+J),1.0D0),0.0D0)
101 XSUM=XSUM+XIN(J)
DO 102 J=0,MIXSPC
 X(J) = XIN(J)/XSUM
102 IF (IDEAL(M0).EQ.1) GO TO 1
C Ternary N.I.S. treatment
X(2) = 0.0
DO 100, IX=0,MIXSPC
 ROT(IX) = RO(IX,MO) - T*RT(IX,MO)
 GXS = ROT(O)*X(O)*X(I) + ROT(I)*X(I)*X(2) + ROT(2)*X(2)*X(O)
 DO 103, IX=0,MIXSPC
 JX = MOD(IX+1,3)
 KX = MOD(IX+2,3)
 DGDX = ROT(IX)*X(JX) + ROT(KX)*X(KX)
 AKTF(IX+II) = EXP((DG0X - GXS)/RTT)
100 C formula for total derivative of AKTF(I), taking account of dependence
C X2 and X3 on XI under the assumption that as XI varies, the ratio X2:X3
C remains constant.
 DAKTF(IX+II) = 2.0*AKTF(IX+II)/RTT* (- ROT(IX)*X(JX)
 c + ROT(JX)*X(JX)*X(KX)/(1-X(JX)) - ROT(KX)*X(KX))
 IF (TR(6)) WRITE(*,*),X(2),X(1),X(1),AKTF(2),AKTF(1),DAKTF(2),DAKTF(1)
103 CONTINUE
GO TO 999
C Binary N.I.S. (4 parameter) Redlich Kister Treatment
1 XFOS = X(O)*X(O)
 XFIS = X(I)*X(I)
 XD = X(O)-X(I)
 ROT(O) = RO(O,MO) - T*RT(O,MO)
 ASUMO=ROT(O)+RO(1,MO)*(2.0D0*XD+1.0D0)+RO(2,MO)*(3.0D0*XD**2+2.0D0*XD)
 ASUMI=ROT(O)+RO(1,MO)*(2.0D0*XD-1.0D0)+RO(2,MO)*(3.0D0*XD**2-2.0D0*XD)
 AKTF(I1) = EXP(XFIS*ASUMO/RTT)
 AKTF(I) = EXP(XFOS*ASUMI/RTT)
 DASO = 4.0*RO(1,MO)*XD + RO(2,MO)*(24.0D0*XD**2-8.0D0)
 DASI = -4.0*RO(1,MO)-RO(2,MO)*(24.0D0*XD**2-8.0D0)
 DQO = (-2.0D0*X(O)*ASUMO+XFOS*DASO)/RTT
 DQI = (-2.0D0*X(I)*ASUMI+XFOS*DASI)/RTT
 DAKTF(I1) = DQO*AKTF(I1)
 DAKTF(I) = DQI*AKTF(I)
 IF (TR(6)) WRITE(*,*),XFOS,XFIS,XD,RO(1,MO),RO(2,MO)
 cWRITE(*,*),1,XFOS,DAKTF(I1),DAKTF(I)
999 RETURN
END
SUBROUTINE XBER
 INCLUDE 'so1302B4.inc'
 DIMENSION OYF(99)
 M = MO
 PLOG = DMAX1(DLOG(PTOT),1.D1)
 MA = MF(M)
 MB = ML(M)
 IF (TR(6)) WRITE(*,*),XBER with YF,AKT,AKTF,DAKTF=
 DO 14 I = MA,MB
 IF (TR(6)) WRITE(*,666)
 TEXT(I) ,YF(I),AKT(I),AKTF(I),DAKTF(I)
 IF (TR(6)) WRITE(*,666)
 14 CONTINUE
 IF (TR(6)) WRITE(*,666)
 DO 38 I = MA,MB
 PIA = -G(I)
 DO 87 J = 1, L
 IF (PIA .GT. PLOG) PIA = PLOG
 IF (PIA .GT. DEXP-MINI THEN
 ELSE
 87 PIA = PIA + A(I,J)*PI(J)
 C *** An arbitrary operational limit *****
 IF (PIA .GT. DEXP_MIN) THEN
 AKT(I) = DEXP(PIA)
 ELSE
 AKT(I) = .0D0
 END IF
 IF (ICHS.EQ.1) CALL FACTOR
 38 CONTINUE
 1471 CONTINUE
 1473 FORMAT(A30,13,3F12.6)
 1474 CONTINUE
 IF (ICHS.EQ.1) CALL FACTOR
C *** terminal limit
IF (IVAR .EQ. 75) RETURN

DO 139 I = MA, MB
IF (AKTF(I).EQ.1 .OR. YF(I).EQ.0.) GO TO 139

C Following is for non-ideal solutions only

IF(TR(6)) WRITE(*,61)' XBER 139b i, YF(I), AKTF(I): ' I, I, YF(I), AKTF(I) trace 6b
OYF(I) = YF(I)
ACT = AKTF(I)*YF(I)

IF(TR(6)) WRITE(*,61)' XBER 139c I, YF(I), AKTF(I): ' I, I, YF(I), AKTF(I) trace 6b
IF(ICH1.EQ.1) CALL FACTOR

IF(TR(6)) WRITE(*,61)' XBER 139d I, YF(I), AKTF(I): ' I, I, YF(I), AKTF(I) trace 6b

139 CONTINUE

DO 137 I = MA, MB
IF (AKTF(I).EQ.1 .OR. YF(I).EQ.0.) GO TO 137

C *** An arbitrary operational limit *****
IF (DABS(OYF(I)/YF(I) - 1.) .GT. 1.0-4) GO TO 147

137 CONTINUE
IF(TR(6)) WRITE(*,*) 'Leave XBER: YF, AKT, AKTF, DAKTF'
DO 13 I = MA, MB
IF(TR(6)) WRITE(*,666) TEXT(I), YF(I), AKTF(I), DAKTF(I) trace 6b
13 CONTINUE

C Note: Mixture #1 is the gas phase
IF (MP.GT.1) GOTO 713
WRITE(*,*) ' There are no mixtures specified in ',INFNAME
CALL PAUSE
RETURN

713 DO 702 I = 2, MP
IF (I.EQ.1) GOTO 710
WRITE(*,711) I-1, (TEXT(J), J=MF(I),ML(I))
711 FORMAT (' Mixture #',12,' contains ',5(A10,1X))
NCOMP = ML(I)-MF(I) + 1
IF(NCOMP.LE.3) GOTO 710
WRITE(*,712)
712 FORMAT (' Warning: The non-ideal treatments are available only for 2- or 3-component mixtures.')
CALL PAUSE
GOTO 702

710 WRITE(*,703) I-1
703 FORMAT (' Treatment of mixture #', I2, ': ')
READ(*,*) IDEAL(I)
IF(IDEAL(I).EQ.0) GO TO 720

IF(IDEAL(I).EQ.1.AND.NCOMP.EQ.3) THEN
WRITE(*,') Option 1 not available for 3-component mixtures'
GOTO 710
END IF

IF(IDEAL(I).EQ.2) GO TO 750
WRITE(*,') Ideal solution treatment'
1720 DO 721 J=0,2
RO(J,I)=0.0
721 RT(J,I)=0.0
GO TO 702

C Binary 4-parameter R/K input
730 CONTINUE
 WRITE(*,734) I-1
734 FORMAT(' Input RO, RT, R1, R2 values for mixture #',12,: ')
 READ(*,*) RO(0,I),RT(0,I),R0(1,I),R0(2,I)
GOT0 702

C Binary or Ternary 2-parameter (per species permutation) fit
750 NL=0
 IF (NCOMP.EQ.3) NL=2
 DO 752 N=0,NL
 WRITE(*,754) I-1,N+1,MOD(N+1,3)+1
752 READ(*,*) RO(N,I),RT(N,I)
754 FORMAT(' Input RO, RT values for mixture #',I2,' components '
,111,' and '111,: ')

702 CONTINUE
 ICHE=0
 DO 7021 I=1,maxmix
7021 IF (IDEAL(I).GT.0) ICHE = 1
 RETURN
END

[FILE TRC30284.FOR]

SUBROUTINE TRAC_PRINT
 INCLUDE 'so1302B4.inc'
1 WRITE(*,*)
 WRITE(*,*)' [1] prints matrix in DO 10 ', TR(1)
 WRITE(*,*)' [2] prints "Examine solids" in DO 53 ', TR(2)
 WRITE(*,*)' [3] prints "GASOL DO 29 stuff ", TR(3)
 WRITE(*,*)' [4] prints "Calling FACTOR at 792" ', TR(4)
 WRITE(*,*)' [5] prints "Label 11+2" in GASOL, & K & B0(K) ', TR(5)
 WRITE(*,*)' [6] prints info from XBER, entering, exiting ', TR(6)
 WRITE(*,*)' [7] prints GASOL at DO 3, YX(S),YX() ', TR(7)
 WRITE(*,*)' [8] prints PI()-OPI()check in GASOL at DO 701 ', TR(8)
 WRITE(*,*)' [9] prints out table, even tho calc failed ', TR(9)
 WRITE(*,*)' Choose a number to "toggle" (T or F) or 0 to exit: '
 WRITE(*,*)
2 READ(*,*,ERR=3) I
 IF(I.EQ.0) RETURN
 IF(I.LT.9) GO TO 4
 WRITE(*,*)'Valid options are zero through 9. Please retry.'
 GO TO 2
4 CONTINUE
 TK1 = (.NOT.TR(I))
 GOTO 1
END
ATTACHMENT II

PROGRAM LISTING OF MASSAGE.PAS
uses dos,crt;

type linevar =string[80];
linetypevar = (temperature,pressure,volume,heat,for_data,pas_data,unknown);

var fin,fout: text;
act,pp,ni,nf: array[1..99] of double;
nam: array[1..99] of string[10];
s1,s2,T,P,V,Preheat,Hrnx,Net_Heat:
found: integer;
l2,: array[2..9];
l4,: array[4..9];
l10,: array[10..9];
l15,: array[15..9];
mnin,mnout: line;
line: linevar;
linetype: linetypevar;
ln10:

procedure Terminate;
begin
 close(fin);
 close(fout);
 writeln('Finished.');
 Halt;
end;

procedure crash;
begin
 writeln;
 writeln('translating error: code = ',oops,' in following line:');
 writeln(line);
 terminate;
end;

procedure Output_data;
var m: integer;
begin
 for m:=1 to MATL do
 writeln(fout, id:4, tltlT:7:28t,' ,P:13,' 118V:13,'Hrxn:13,
 net_heat:13,
 name, tml,
 ni:13,
 nf:13,
 pp:13,
 act[m]:13);
end;

function translate(asc:string):double;
var mant,ex:double;
begin
 while asc[1] = ' ' do asc :=copy(asc,1,length(asc)-1);
 while pos(' ',asc)>0 do
 begin
 end;
 asc:=copy(asc,pos(' ',asc)+1,991;
 s2:=1;
 if asc[1] = '-' then sl:=-1 else sl:=+1;
 if sl=-1 then asc:=copy(asc,2,99);
 cl:=pos('D',asc);
 if cl=0 then cl:=pos('E',asc);
 if cl=0 then asc:=copy(asc,2,99);
 c1:=pos('E',asc);
 if c1=1 then asc:=copy(asc,2,99);
 c1:=pos('E',asc);
 if c1=1 then asc:=copy(asc,2,99);
 cd:=pos('D',asc);
 if cd=0 then cd:=pos('E',asc);
 if c1=0 then ex:=0.0
 else
 begin
 sl:=sl*sign1;
 end;
 if ex=0.0
 then cd:=sign1*(c1*e+1,99)
 else
 begin
 if (asc[1]=\-') THEN s2:=1;
 else
 begin
 end;
 end;
end;
\[14 := \text{copy}(\text{asc}, c1+1, 4)\];
\[\text{val}(14, ex, oops); \text{if} \ oops>0 \ \text{then} \ \text{crash};\]
\[\text{if} \ cd=0 \ \text{then} \ c1:=cd;\]
\[\text{asc}:=\text{copy}(\text{asc}, 1, c1-1);\]
\[\text{end;}\]
\[\text{val}(\text{asc}, \text{mant}, oops); \text{if} \ oops>0 \ \text{then} \ \text{crash};\]
\[\text{translate} := s1*\text{mant}*\exp(s2*ex*ln10);\]
\[\text{end;}\]

\begin{verbatim}
procedure process_T;
begin
 cl := pos('=', line)+1;
 c2 := pos('K', line)-1;
 c2 := c2 - c1 + 1;
 L10 := copy(line, cl, c2);
 T := translate(L10);
 if oops>0 then crash;
 found := true;
end;

procedure process_P;
begin
 cl := pos('=', line)+1;
 c2 := pos('Pa', line)-2;
 c2 := c2 - c1 + 1;
 L15 := copy(line, cl, c2);
 P := translate(L15);
 if oops>0 then crash;
 found := true;
end;

procedure process_V;
begin
 cl := pos('=', line)+1;
 c2 := pos('liter', line)-1;
 c2 := c2 - c1 + 1;
 L15 := copy(line, cl, c2);
 V := translate(L15);
 if oops>0 then crash;
 end;
end;
\end{verbatim}

\begin{verbatim}
Function Identification(A: linevar): linetypevar;
var id: linetypevar;
begin
 id := unknown;
 if copy(A, 2, 3) = 'T' = '1' THEN id := temperature;
 if copy(A, 2, 3) = 'P' = '1' THEN id := pressure;
 if copy(A, 2, 3) = 'V' = '1' THEN id := volume;
end;
\end{verbatim}

\begin{verbatim}
if ((copy(A, 23, 1) = 'D') and (copy(A, 17, 1) = '1'))
 THEN id := for_data;
if ((copy(A, 21, 1) = 'E') and (copy(A, 16, 1) = '1'))
 THEN id := pas_data;
if ((copy(A, 32, 2) = 'kJ') OR (copy(A, 32, 2) = 'kJ'))
 THEN id := heat;
end;
\end{verbatim}

\begin{verbatim}
procedure Newline;
begin
 if EOF(fin) THEN Terminate;
 readln(fin, line);
end;
\end{verbatim}

\begin{verbatim}
Procedure Process_FOR_Data;
begin
 mat1 := mat1 + 1;
 name[mat1] := copy(line, 2, 10);
 l15 := copy(line, 15, 12); n[mf[mat1]] := translate(l15);
 l15 := copy(line, 30, 12); nf[mf[mat1]] := translate(l15);
 act[m[mat1]] := 1.0e-99;
 pp[m[mat1]] := 1.0e-99;
 if pos('D', copy(line, 40, 99)) > 0 then begin
 l15 := copy(line, 45, 12); pp[m[mat1]] := translate(l15);
 if pos('D', copy(line, 56, 99)) > 0 then begin
 l15 := copy(line, 60, 12);
 act[m[mat1]] := 1.0e-99;
 end;
 end;
end;
\end{verbatim}

\begin{verbatim}
Procedure Process_PAS_Data;
begin
 mat1 := mat1 + 1;
 name[m[mat1]] := copy(line, 2, 10);
 l15 := copy(line, 14, 13); n[m[mat1]] := translate(l15);
 l15 := copy(line, 29, 13); nf[m[mat1]] := translate(l15);
 act[m[mat1]] := 1.0e-99;
 pp[m[mat1]] := 1.0e-99;
 if pos('E', copy(line, 41, 99)) > 0 then begin
 l15 := copy(line, 44, 13); pp[m[mat1]] := translate(l15);
 if pos('E', copy(line, 55, 99)) > 0 then begin
 l15 := copy(line, 59, 13);
 act[m[mat1]] := translate(l15);
 end;
 end;
end;
\end{verbatim}
Data File reorganizer for SOLGAS ver. 2.44 and 3.02

IF (PARAMCOUNT=1) THEN
begin
write('Converting ',nmin);
assign(fin,nmin);
reset(fin);
write('to ',nmout);
assign(fout,nmout);
rewrite(fout);
end
ELSE
BEGIN
write('SOLGAS output data file name? ');
readln(nmin);
assign(fin,nmin);
reset(fin);
write('Name for spreadsheet-import file? ');
readln(nmout);
assign(fout,nmout);
rewrite(fout);
END;

NEWLINE;
if Identification(line)=temperature THEN Process_T;
begin
END;
until found;

NEWLINE;
if Identification(line)=pressure THEN Process_P;
begin
END;
until found;

NEWLINE;
if Identification(line)=volume THEN Process_V;
begin
matl:=0;
END;
until found;

NEWLINE;
if Identification(line)=heat THEN Process_heat;
begin
found:=true; {actually, end of list}
END;
until found;

NEWLINE;
nline:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if (linetype=heat) THEN found:=true; {actually, end of list}
END;
until found;

L15:=copy(line,20,11); Preheat:=translate(l15);
readln(fin,line); L15:=copy(line,20,11); Hrxn:=translate(l15);
readln(fin,line); L15:=copy(line,20,11); Net_Heat:=translate(l15);

Output_data;
END (repeat of main loop)
UNTIL EOF(fin);
Terminate;
end.

(search for "P-line")
(re-entry point if data doesn't follow P)
repeat
BEGIN
NEWLINE;
if Identification(line)=pressure THEN Process_P;
end;
until found;

(search for "V-line")
found:=false;
repeat
BEGIN
NEWLINE;
if Identification(line)=volume THEN Process_V;
end;
until found;

(search for "Material-lines")
found:=false;
repeat
BEGIN
NEWLINE;
linetype:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
end;
until found;

(search for "T-line")
found:=false;
repeat
BEGIN
NEWLINE;
if Identification(line)=temperature THEN Process_T;
end;
until found;

REPEAT
BEGIN
(search for "T-line")
ID:=succ(id);
found:=false;
repeat
BEGIN
NEWLINE;
if Identification(line)=temperature THEN Process_T;
end;
until found;

REPEAT
BEGIN
(search for "P-line")
found:=false;
repeat
BEGIN
NEWLINE;
if Identification(line)=pressure THEN Process_P;
end;
until found;

REPEAT
BEGIN
(search for "V-line")
found:=false;
repeat
BEGIN
NEWLINE;
if Identification(line)=volume THEN Process_V;
end;
until found;

REPEAT
BEGIN
(search for "Material-lines")
found:=false;
repeat
BEGIN
NEWLINE;
linetype:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
end;
until found;

NEWLINE;
nline:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
until found;

NEWLINE;
nline:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
end;
until found;

NEWLINE;
nline:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
end;
until found;

NEWLINE;
nline:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
end;
until found;

NEWLINE;
nline:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
end;
until found;

NEWLINE;
nline:=Identification(line);
if linetype=temperature then begin
process_T;
goto Re_try;
end;
if (linetype=pas-data) THEN process_pas-data;
if (linetype=for-data) THEN process_for-data;
if linetype=heat THEN found:=true; {actually, end of list}
END;
end;
until found;
ATTACHMENT III

PROGRAM LISTING OF ADIABAT.PAS
program ADIABAT; (version 7, for SOLGAS v.3.04B4)
(LDT 8/25/95)
(SN* ,E+) (uses or emulates 80387)
(SN $4000,0,0) (...needed to reduce heap size, allowing use of "EXEC")

"ADIABAT" for SOLGAS. This program is intended to use standard SOLGAS input files, drive SOLGAS via DOS redirection and use of an internally generated macro file, read SOLGAS's output, alter the control macro, and re-run SOLGAS until some input value (usually the overall heat of reaction) converges to zero.

This version is set up presently to...

...Run with SOLGAS.EXE (version 2.44 or 3.02)
...vary T or a single starting material's initial quantity.
...find an adiabatic solution, i.e. the "net heat = 0" point
...run at constant pressure or volume as specified by control file
(Const P ==> enter +P (Bar); Const V ==> -V (liters))
...write brief output containing one line per final run, listing run #, T, P, V, heat, names and quantities of materials).

A brief example control file is included at the end of this listing. See ADIABAT.DOC for more detailed information.

ADIABAT-PAS written by L.D.Trowbridge, 5-19-93; updated 8-23-95
Lockheed Marietta Energy Systems, Inc.
PO Box 2003, M.S. 7266
Oak Ridge, TN 37831-7266
ph (615) 576-2496
internet: <LDT@STCI.0.CTD.ORNL.GOVT

This work performed under contract to the U.S. Department of Energy
}

uses dos,crt;
type linetypevar = string[80];
inertypevar = (temperature, pressure, volume, heat, for_data, pas_data, unknown);
const SOLGAS_EXE='SOLGAS.EXE';

cr = 'M';
max_tries = 20; (This algorithm IS a form of "twenty questions"...)
criterion = 0.02; (Iteration will stop when net heat released/absorbed)
(smaller than this because of the number of (significant digits listed in the SOLGAS output.)

var fin,mac,data_file,ctrl_file,results_file : text;
name_root,data_file_name,ctrl_file_name,results_file_name : string[80];
temp,no_starting_mats : integer;
act,pp,nf : array[1..99] of double;
name : array[1..99] of string[10];
P_or_V,s1,s2,T,P,V,Preheat, Hrxn,Net_heat : double;
i,id,matl,s1,cj,c2,oops : integer;
found : boolean;
l2 : string[2];
l4 : string[4];
l10 : string[10];
l15 : string[15];

min,mmout,line,line2,
linetype : linetypevar;
ln10 : double;

(cf Interpolation and control variables)\n
divergence : boolean;
T_test,P_test,V_test,H_test : array[1..2,1..71] of real;
Q_test : array[1..2,1..1.1.1.1.71] of real;
PP_test : array[1..2,1..991] of real;
id_of_mat : array[1..71] of integer;
active,inactive,it_cnt,ctrl_var : integer;

procedure RUN_DOS(cmd:string);
begin
swapvectors;
exec(cmd);
swapvectors;
if DosError<>0 then
write('DOS Error #:',Doserror,' running ',cmd,'');
end;

procedure Terminate;
begin
writeln('Finished.');
RUN_DOS('del $$temp.*');
close(results_file);
close(ctrl_file);
Halt;
end;

procedure crash;
begin
writeln('Translation error: code = ',oops,' in following line:');
writeln(line);
terminate;
end;

procedure Output_macro_file(b:integer);
begin
assign(mac,'$$temp.mac');
rewrite(mac);
end;
writeln(mac,data_file~name,cr,'$temp.out',cr,T_Test[b]:8:3);
writeln(mac,'I',',',cr,P_or_V:15:5);
writeln(mac,'I',',',cr,'I');
for m:=1 to No_starting_mats do writeln(mac,'I');
for m:=1 to No_starting_mats do
if Q_Tess[b,m]<e-6 then writeln(mac,'I');
else writeln(mac,Q_Tess[b,m]:10:6);
writeln(mac,cr,'I',cr,'
','I');
close(mac);
end;

Procedure interpolate(VAR H1,H2,C1,C2:real); CNewton's method;
begin
if abs(h2-h1)<e-6 then
begin
writeln('Convergence failure...#');
divergence:=true;
exit;
end;
c3:=-h1*(c2-~1)/(h2-h1)+1;
if abs(c3-c1) < abs(c3-c2) then begin active:=2; c2:=c3; end
else begin active:=1; cl:=c3; end;
end;

Procedure brief_header;
var m: integer;
begin
writeln(results_file,'IDl,T(K),P (Bar),V (l),Net Heat (kJ)');
for m:=1 to No_starting_mats DO writeln(results_file,'I',m:10,');
writeln(results_file,warning);
end;

Procedure Brief_output_data;
var m: integer;
warning: string[15];
begin
if it_cnt>max_tries then warning:="UNCONVERGED" else warning:=" '';
WRITE(results_file,id:4,' ','T','test[active]:7:2,' ',P:12,' ',V:12,
',',',H_test[active]:13);
FOR m:=1 to No_starting_mats DO WRITE(results_file,',');name[m]:10,',';
Q_Test[active,m]:13);
writeln(results_file,warning);
end;

>(* procedure header;
val(l4,ex,oops); if oops>0 then crash; (value of exponent)
if cd>0 then cl:=cd;
asc:=copy(asc,1,cl-1); (trim the exponent)
end;
val(asc,mant,oops); if oops>0 then crash; (mantissa)
translate:= s1*mant*exp(s2*ex*n10); (done...)
end;

procedure process_T;
(Temperature Line in SOLGAS Output)
begin
c1:=pos('=',line)+1;
c2:=pos('X',line)-1;
c2:=c2-c1+1;
L10:=copy (line,c1,c2);
T:=translate(L10);
if oops>0 then crash;
found := true;
end;

procedure process_V;
(Volume Line in SOLGAS Output)
begin
c1:=pos('=',line)+1;
c2:=pos('liter',line)-1;
c2:=c2-c1+1;
L15:=copy (line,c1,c2);
V:=translate(L15);
if oops>0 then crash;
found := true;
end;

procedure process_P;
(Pressure Line in SOLGAS Output)
begin
c1:=pos('=',line)+1;
c2:=pos('bar',line)-1;
c2:=c2-c1+1;
L15:=copy (line,c1,c2);
P := translate(L15);
if oops>0 then crash;
found := true;
end;

Function Identification(A:linevar):linetypevar;
var tp:linetypevar;
begin
 tp := unknown;
 if copy(A,2,3) = 'T' THEN tp := temperature;
 if copy(A,2,3) = 'P' THEN tp := pressure;
 if copy(A,2,3) = 'V' THEN tp := volume;
 if (((copy(A,25,1) = 'D') and (copy(A,17,1) = 'I')) THEN tp := for_data;
 if (((copy(A,21,1) = 'E') and (copy(A,16,1) = 'I')) THEN tp := pas_data;
 if copy(A,32,2) = 'kJ' THEN tp := heat;
end;

procedure Newline;
begin
 if EOF(fin) THEN Terminate;
 readln(fin,line);
end;

Procedure Process_FOR_Data;
begin
 matl:=matl+1;
 name[matl]:= copy(line,2,10);
 L15:=copy(line,15,12);ni[matl]:=translate(L15);
 l15:=copy(line,30,12);nf[matl]:=translate(L15);
 act[matl]:=1.0e-99;
p[matl]:=-1.0e-99;
if pos('D',copy(line,40,99)) >0 then
 begin
 L15:=copy(line,45,12);pp[matl]:=translate(L15);
 if pos('D',copy(line,56,99)) >0 then
 begin
 L15:=copy(line,60,12);
 act[matl]:=translate(L15);
 end;
 end;
 end;
end;

Procedure Process_PAS_Data;
begin
 matl:=matl+1;
 name[matl]:= copy(line,2,10);
 L15:=copy(line,14,13);ni[matl]:=translate(L15);
 l15:=copy(line,29,13);nf[matl]:=translate(L15);
 act[matl]:=1.0e-99;
p[matl]:=-1.0e-99;
if pos('E',copy(line,41,99)) >0 then
 begin
 L15:=copy(line,44,13);pp[matl]:=translate(L15);
 if pos('E',copy(line,55,99)) >0 then
 begin
 L15:=copy(line,59,13);
 act[matl]:=translate(L15);
 end;
 end;
 end;
end;

procedure Interpret_solgas_output_table(n:integer);
label re_try; (Identify and process a single)
var i:integer; (SOLGAS output table)
begin

(search for "T-line")
found:= false;
repeat
BEGIN
Newline;
if Identification(line)=temperature THEN Process_T;
end;
until found;

(search for "P-line")
re_try: found:= false;
(re-entry point if data doesn't follow P)
repeat
BEGIN
Newline;
if Identification(line)=pressure THEN Process_P;
end;
until found;

(search for "V-line")
found:= false;
repeat
BEGIN
Newline;
if Identification(line)=volume THEN Process_V;
end;
until found;

(search for "Material-lines")
found:= false;
repeat
BEGIN
Newline;
linetype:= Identification(line);
if linetype=temperature then begin
 Process_T;
 goto re_try;
end;
if (linetype=pas_data) THEN process_pas_data;
if (linetype=for_data) THEN process_for_data;
if linetype=heat THEN found:= true; (actually, end of list, in this case)
end;
until found;

(preheat)
l15:=copy(line,20,11); Preheat:= translate(l15);
readln(fin,line); l15:=copy(line,20,11); Hrxn:= translate(l15);
readln(fin,line); l15:=copy(line,20,11); Net_Heat:= translate(l15);

(save run results in internal feedback arrays)
T_test[n]:=T; H_test[n]:=net_heat;
for i:=1 to No_starting_matls do Q_test[n,i]:= ni[1d_of_matl[i]]
end;

procedure RUN_SOLGAS(k:integer);
begin
output_macro_file(k);
it_cnt:=succ(it_cnt);
RUN_DOS('del $temp.mac');
RUN_DOS(SOLGAS_EXE+` < $temp.mac > null'); (runs from macro; sends)
 (screen output to limbo)
assign(fin,'$temp.out');
reset(fin);
interpret_SOLGAS_output_table(K);
close(fin);

writeln('Run #',ID:5,' T1 = ',T_Test[1]:7:2,' T2 = ',T_Test[2]:7:2,
 ' H1 = ',H_Test[1]:8:3,' H2 = ',H_Test[2]:8:3);
end;

begin (MAIN)
assign(input,''); reset (input); (These two lines allow)
assign(output,''); rewrite (output); (DOS redirection)

ln10:=ln(10);
for cl:=1 to 4 DO writeln;
writeln;

'Adiabatic Driver (ver. 7) by L.D.Trowbridge');
writeln('SOLGAS thermodynamics data file name? I);
readln(data_file_name);
end ELSE data_file_name:=name_root+' .DAT1;
assign(data_file,data_filepame); reset (data_file);

(following section is the only one depending on the precise
format of the SOLGAS input data file)
i:=0;
no_starting_matls:=O;
repeat readln(data_file,line) UNTIL
 ((copy(line,1,2)='T=')
OR (copy(line,1,3)='T,=')
OR
EOF(data_file));
IF EOF(data_file) THEN
begin
 writeln;
 writeln('No starting material temperature line found in "',
 data_file_name,'."');
 close(data_file);
 halt;
end;
WHILE NOT EOF(data_file) DO
begin
 readln(data_file,line);
 inc(i);
 if copy(line,1,1)=='#' THEN
 begin
 inc(no_starting_mats);
 id_of_mat[no_starting_mats]:=i;
 end;
end;
close(data_file);

(end of input file-dependent section)

IF PARAMCOUNT=0 THEN
begin
 write(' Control file name? ');
 readln(ctrl_file_name);
end ELSE ctrl_file_name:=name_root+'.DRVt;
assign(ctrl_file,ctrl_file_name);
reset (ctrl_file);

IF PARAMCOUNT=0 THEN
begin
 write(' Results file name? ');
 readln(results_file_name);
end ELSE results_file_name:=name_root+'.PRN';
assign(mac,'$$temp.out'); rewrite(mac);
 writeln(mac,'dummy line'); close(mac);
assign(results_file,results_file_name);
rewrite (results_file);
brief_header; (or "Header;" for full output file)
ID:=0;
REPEAT
BEGIN
 divergence:= false; it_cnt:=0; id:=succ(id);
 read(ctrl_file,ctrl_var,T_test[1],P or V);
 H_Test[1]:=-9.999; H_Test[2]:=-9.999;
 for i:=1 to no_starting_mats do read(ctrl_file,Q_test[1,i]);
 t_test[2]:=t_test[1];
 for i:=1 to no_starting_mats DO q_test[2,i]:=q_test[1,i];
 if ctrl_var=0
 THEN t_test[2]:=t_test[2]*1.10
 else q_test[2,ctrl_var]:=q_test[2,ctrl_var]*1.10;
 RUN_SOLGAS(1);
 active:=2;
 repeat
 begin
 RUN_SOLGAS(active);
 inactive:=2; if active=2 then inactive:=1;
 if (abs(H_test[active])>Criterion) then
 if ctrl_var=0
 then
 Interpolate(H_test[1],H_test[2],T_test[1],T_test[2])
 else Interpolate(H_test[1],H_test[2],
 q_test[1,ctrl_var],q_test[2,ctrl_var]);
 end;
 until ((it_cnt=max_tries)
 OR divergence
 OR (abs(H_test[active])<=Criterion));
 write('Run #',ID:5);
 if not divergence then
 begin
 write(' T = ',T_Test[active]:7:2,
 ' H = ',H_Test[active]:6:3,', X = (');
 for i:=1 to no_starting_mats do
 write(Q_Test[active,i]:6:3,')
 write(1)
 if (it_cnt=max_tries) then
 begin
 write(' Run #:',ID:5);
 active:=1; brief_output_data;
 active:=2; brief_output_data;
 writeln
 (' - too many iterations; results saved, but are suspect');
 end
 else (AOK)
 brief_output_data;
 OR use: "Output_data:" routine (requires recompilation)
 (for full spreadsheet-importable output)
 end
 else (divergence)
 write('diverged - results discarded');
END (repeat of main Loop)
UNTIL EOF(ctrl_file);
Terminate;
DISTRIBUTION

Los Alamos National Laboratory
- D. E. Peterson
- R. Shelton
- M. A. Williamson

Oak Ridge K-25 Site
- D. P. Armstrong
- E. J. Barber
- W. D. Bostick
- D. H. Bunch
- R. L. Fellows
- D. A. Harkins
- R. L. Higgins
- J. M. Leitnaker (10)
- D. C. Mason
- J. H. Pashley
- A. S. Quist (3)*
- R. L. Ritter
- D. W. Simmons
- L. D. Trowbridge (10)
 App. Tech. Library
 K-25 Plant Records

Naval Research Laboratory
- R. L. Jones

Oak Ridge National Laboratory
- E. C. Beahm
- J. Bentley
- E. A. Kenik

Paducah Gaseous Diffusion Plant
- R. L. Jones
- M. G. Otey
- R. G. Russel
- D. L. Weishaar
- P. D. Wooldridge
 Technical Library

Penn. State University
- K. E. Spear

Portsmouth Gaseous Diffusion Plant
- R. M. Konanz
- D. M. Manuta
- W. D. Netzer
- A. J. Saraceno
 Technical Library

Ben Gurion University of the NEGEV
- Dan Meyerstein

University of Missouri, Rolla
- A. E. Morris

State University of New York, Binghampton
- C. E. Myers

2 copies intended for OSTI