New Experiments Elucidating the Current Limiting Mechanisms of Ag-Sheathed (Bi,Pb)2Sr2Ca2Cu3Ox Tapes

D. C. Larbalestier*, J. W. Anderson†, S. E. Babcock†, X. Y. Cai*, S. E. Dorris‡, ‡T1, ‡e&M. Feldmann*, J. Jiang*, Q. Li‡, J. A. Parrell, R. Parrella, M. Polak, A. Polyanskii, G. N. Riley‡, M. Rupich‡, and Y. Wu†.

Abstract:

Multiple current limiting mechanisms exist from the nanometer to millimeter scale in Ag-sheathed (Bi,Pb)-2223 tapes. Recent studies of the zero-field critical current density (Jc(0, 77K)), the irreversibility field (H*), and the crack microstructure elucidate these properties. We show that H*(77K) can vary significantly over the range -120-260 mT, independently of Jc(0, 77K). Cracks, actual or incipient, exist on the sub to several hundred micron scale. Surface magneto optical imaging of whole tapes, correlated to subsequent ultrasonic fracture analysis of the bare 2223 filaments extracted by dissolving away the Ag shows that even composites having Jc(0, 77K) values of 60 kA/cm2 exhibit strong signs of unhealed rolling damage. These combined studies show that today's very best 2223 tapes are still far from full optimization.

Keywords: BSCCO-2223, critical current density, irreversibility fields, cracks, ultrasonic fractures.

INTRODUCTION

It is now well accepted that several current limiting mechanisms (CLM) operate simultaneously in Ag-sheathed (Bi,Pb)2Sr2Ca2Cu3Ox (2223) tapes. These CLM operate on multiple length scales from the nanometer scale of vortex pinning and grain boundary structure to the millimeter scale of cracks and filament sausaging irregularities. Because of this complexity, it is still not clear what the true limits to JC of this system are. Thin film 2223 samples have been reported to have Jc(0, 77K) values from 105-150 A/cm2 [1-3], while analysis of resistivity data on bulk 2223 and 2212 single crystals has suggested that well above 100 kA/cm2 is possible [4]. As of now, the largest reproducible (and thus verified) values of Jc(0, 77K) are in the 70 kA/cm2 range [5]. Single filaments extracted from 50 kA/cm2 samples showed [6] a clear crossover from junction-control of Jc in self field (produced by occasional c-axis current flow) to vortex depinning within a-h-planes in small applied fields. Magneto optical (MO) imaging also showed quasi-periodic, flux-leakage channels, which cross whole filaments transverse to the rolling axis, suggesting significant, but not total, interruption of the supercurrent by only...
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

 Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
PHONON DENSITY OF STATES IN Fe/Cr(001) SUPERLATTICES AND Tb-Fe THIN-FILM ALLOYS

W. Sturhahn, R. Roehlsberger, and E.E. Alp
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

T. Ruckert, H. Schröer, and W. Keune
Angewandte Physik, Universität Duisburg, D-47048 Duisburg, Germany

Abstract

Inelastic nuclear scattering of X-rays from the 14.413 keV nuclear resonance of 57Fe was employed to measure directly the Fe-projected phonon density of states (DOS) in MBE-grown Fe/Cr(001) superlattices on MgO(001). The Mössbauer-inactive 55Fe isotope was used in the Fe layers. A 1Å thick Mössbauer-active 57Fe-probe layer (95% enriched) was placed at different locations within the Fe layers. This procedure permits one to distinguish phonon density of states at the Fe-Cr-interface from that at the center of the Fe-film. Distinct differences have been observed in the DOS of our samples. The phonon DOS of an amorphous Tb$_3$Fe$_{67}$ alloy film was found to be a broad and structureless hump, contrary to that of an epitaxial TbFe$_2$ film, which exhibits characteristic features.

Key words: phonon density of states, inelastic nuclear resonance scattering, Fe/Cr(001) superlattice, Tb-Fe alloy film

complete address, e-mail, telephone and fax of author for correspondence:

W. Keune
Laboratorium für Angewandte Physik
Gerhard-Mercator-Universität Duisburg
D-47048 Duisburg, Germany

Tel: (+49)203-379-2387; Fax: (+49)203-379-3601; Email: keune@uni-duisburg.de
Knowledge of the phonon density of states (DOS) is essential for our basic understanding of lattice vibrations. Extensive investigations of phonons in semiconducting superlattices have revealed novel phenomena, such as folding, confinement and interface modes [1]. For metallic multilayers (MMLs), on the other hand, only few reports of folded [2] or confined [3] phonons exist. Knowledge of vibrational properties of MMLs is highly desirable, also because their electronic properties may be affected by phonons [4]. In the present work inelastic nuclear scattering of X-rays from the 14.413 keV nuclear resonance of 57Fe [5-7] was used to measure directly the Fe-projected phonon DOS in Fe/Cr(001) superlattices and in single films of epitaxial TbFe$_2$(110) (Laves phase) and an amorphous Tb$_{33}$Fe$_{67}$ alloy.

Two types of Fe/Cr(001) superlattices (labeled Arg 03 and Arg 04, respectively) were epitaxially grown at 160 °C by MBE on MgO(001) substrates carrying a 50Å Cr buffer layer, which was grown at 670 °C:

Arg 03: MgO(001)/Cr(50Å)/[57Fe(0.7ML)/56Fe(8ML)/Cr(8ML)]$_{200}$

Arg 04: MgO(001)/Cr(50Å)/[56Fe(4ML)/57Fe(0.7ML)/56Fe(4ML)/Cr(8ML)]$_{200}$

Isotopically depleted 56Fe was used, which gives no nuclear resonance signal. In addition, 0.7 monolayer (ML) thick probe layers of 95.5 % enriched 57Fe were artificially placed either at the 56Fe-on-Cr interfaces (Arg 03) or in the center of the 56Fe layers (Arg 04), thus providing a nuclear resonance signal either from this Fe/Cr interface (Arg 03) or from the Fe-film center (Arg 04). Fig. 1 shows X-ray diffraction (XRD) patterns of Fe/Cr-samples Arg 03 and Arg 04, respectively. The two symmetrical superstructure-statellite peaks demonstrate the high-quality superlattice structure of our Fe/Cr(001) multilayers.

The Tb-Fe alloy films were prepared in UHV by thermal co-evaporation of high-purity Tb
and 95.5 % enriched 57Fe [8]. Films of 175-Å or 800-Å-thick amorphous (a-) Tb$_{33}$Fe$_{67}$ were grown at 300 K and on Si(001) wafers initially coated with a 200-Å-thick Pt buffer layer. The 800-Å-thick epitaxial TbFe$_2$(110) film was grown at 500 °C on a sapphire (11-20) substrate after deposition of a 350-Å-thick Nb(110) buffer layer followed by a thin (15 Å) 57Fe seed layer [9]. The samples were coated with ~ 50 Å Si for protection. XRD patterns of the epitaxial TbFe$_2$ film and of the a-Tb$_{33}$Fe$_{67}$ (175 Å) film confirmed the TbFe$_2$(110) epitaxial orientation and the amorphous structure of this Tb-Fe film, respectively.

The inelastic nuclear resonant absorption experiments were performed at the undulator beamline 3-ID of SRI-CAT at the Advanced Photon Source. Details of the technique are described in ref. [6]. The incident monochromatized synchrotron radiation had an energy bandwidth of 5.5 meV (2.5 meV) in the case of the Tb-Fe alloy films (Fe/Cr superlattices). The energy was tuned around the 14.413 keV nuclear resonance of 57Fe. The measurements were performed at 300 K with collection times of ~ 10 h to ~ 24 h per spectrum.

The measured normalized data (not shown), i.e., the resulting phonon excitation probabilities per unit of energy, commonly feature a dominant elastic peak in a narrow energy range around the nuclear transition energy and side bands at lower and higher energy due to phonon annihilation and phonon creation, respectively [5-7]. The partial phonon DOS were extracted from the measured excitation probabilities by using the procedure described in ref. [6].

The partial vibrational DOS of the 175-Å-thick a-Tb$_{33}$Fe$_{67}$ film (Fig.2) extends up to ~ 40 meV and shows a maximum at ~ 20 meV. It represents a structureless broad feature, as anticipated for such an atomically disordered material. The same result was obtained on an 800-Å-thick a-Tb$_{33}$Fe$_{67}$ film (not shown). By contrast, the partial DOS of the crystalline TbFe$_2$ film (800 Å) exhibits a sharper maximum at ~ 23 meV and extends to ~ 35 meV. Moreover, a
distinct shoulder appears near 15 meV. Comparison with phonon DOS and dispersion curves for other (bulk) Laves-phase compounds obtained by inelastic neutron scattering [10] shows that the shoulder near 15 meV is related to the high DOS at the Brillouin zone boundary of acoustic modes (longitudinal and transverse), while the main peak near 23 meV is due to optical modes.

The partial phonon DOS of Fe/Cr-samples Arg 03 (interface site) and Arg 04 (center site) show distinct differences (Fig. 3). The DOS of the center site is very similar to that of bulk Fe [6], exhibiting peaks near 23, 28 and 36 meV. Compared to the DOS of the center site (Arg 04), the DOS-peak of the interface site (Arg 03) near 36 meV is remarkably reduced in intensity, while the lower energy feature is notably enhanced. As a possible explanation for the reduction of the 36-meV peak intensity, one should notice that its position nearly coincides with the deep minimum at ~34 meV in the bulk-phonon DOS of Cr [10]. Because of this lack of phonon DOS in Cr, part of the Fe phonons near 34 meV remain confined in the Fe layer and are suppressed at the Fe/Cr interface. This confinement affects longitudinal [001] phonons of Fe near the H point of the Brillouin zone [10].

The work at Argonne is supported by the U.S. Departement of Energy BES-Materials Science under Contract No. W-31-109-ENG-38. The work at Duisburg was supported by Deutsche Forschungsgemeinschaft (SFB166). W.K. is grateful to the Volkswagen Stiftung for supporting his stay at Argonne.

Figure captions

Fig. 1: XRD of Fe/Cr(001)-superlattice sample Arg 03 (top) and Arg 04 (bottom). (Cu-Kα-radiation)

Fig. 2: Fe-projected phonon DOS of a-Tb₃Fe₆₇ alloy film (175 Å) (squares) and of epitaxial TbFe₂(110) film (800 Å) (circles)

Fig. 3: Fe-projected phonon DOS of Fe/Cr(001)-superlattice sample Arg 03 (interface signal) (circles) and Arg 04 (signal from center of Fe layers)(squares).
A 57Fe at the interface

1 Å 57Fe in the center

log count rate [a.u.]

2θ [°]
density of states (1/at.vol./eV)