Modeling heterogeneous unsaturated porous media flow at Yucca Mountain

PDF Version Also Available for Download.

Description

Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the ... continued below

Physical Description

7 p.

Creation Information

Robey, T.H. March 1, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Author

  • Robey, T.H. Spectra Research Inst., Albuquerque, NM (United States)

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass.

Physical Description

7 p.

Notes

INIS; OSTI as DE94008612

Source

  • International high-level radioactive waste management conference, Las Vegas, NV (United States), 22-26 May 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE94008612
  • Report No.: SAND--94-0185
  • Report No.: CONF-940553--18
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/60736 | External Link
  • Office of Scientific & Technical Information Report Number: 145200
  • Archival Resource Key: ark:/67531/metadc625589

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 1, 1994

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • April 14, 2016, 8:40 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Robey, T.H. Modeling heterogeneous unsaturated porous media flow at Yucca Mountain, article, March 1, 1994; Albuquerque, New Mexico. (digital.library.unt.edu/ark:/67531/metadc625589/: accessed September 25, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.