Updated calculations of the reach of Fermilab Tevatron upgrades for Higgs bosons in the MSSM, mSUGRA and mGMSB models

Howard Baer, B. W. Harris, and Xerxes Tata

\textit{Department of Physics}
Florida State University
Tallahassee, FL 32306-4350 USA

\textit{High Energy Physics Division}
Argonne National Laboratory
Argonne, IL 60439 USA

\textit{Department of Physics and Astronomy}
University of Hawaii
Honolulu, HI 96822 USA

Jan. 21, 1999

One of the crucial predictions of supersymmetric models that reduce to the Minimal Supersymmetric Standard Model (MSSM) at the weak scale is that the lightest Higgs scalar should have mass $m_h \lesssim 125 \text{ - } 130 \text{ GeV}$\cite{1}. Recent results on the reach of Fermilab Tevatron upgrades for Standard Model (SM) Higgs bosons show that masses of order 120-180 GeV may be probed\cite{2, 3, 4, 5}, depending on integrated luminosity, detector performance and signal and background modeling. Thus, the discovery of a Higgs boson (or a new limit of around 120-130 GeV on its mass) will severely constrain supersymmetric models as well.

In this report, we update previous calculations made by our group\cite{6} pertaining to the reach of Fermilab Tevatron upgrades for Higgs bosons in supersymmetric models. We present reach results for SUSY Higgs bosons within the MSSM, the minimal Supergravity model (mSUGRA) and in the minimal Gauge Mediated SUSY Breaking model (mGMSB). In this update, 95\% CL exclusion contours and 5\sigma discovery contours are presented for integrated luminosity values of 2, 5 and 20 fb$^{-1}$.

Recently, new results have been presented at the Fermilab Run 2 workshop on

\footnote{To appear in \textit{Proceedings of the Workshop on Physics at Run II - Supersymmetry/Higgs}, Fermilab, Batavia, IL, November 19-21, 1998.}

\footnote{Work supported in part by the U.S. Department of Energy, High Energy Physics Division, under Contract W-31-109-Eng-38.}
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
the reach for SM Higgs bosons [5]. In this report we translate these results into a reach in parameter space of the MSSM, mSUGRA and mGMSB models. We follow the general procedure outlined in Ref. [6] but with the following improvements:

- We use the updated SM signal and background results presented by John Conway at the Run 2 summary meeting. The results used include the Run 2 improved m_{h^\pm} mass resolution and acceptance, but do not include possible enhancements due to use of neural nets [5].

- We include in this update results for the $\ell\nu b\bar{b}$ channel, the $\nu\bar{\nu}b\bar{b}$ channel and the $\ell^+\ell^--b\bar{b}$ channel. The resulting significances were added in quadrature.

In Fig. 1, we show results for the MSSM in the m_A vs. $\tan\beta$ plane taking soft SUSY breaking masses $M_{SUSY} = 1$ TeV and weak scale A parameters $A_i = 0$ for $i = t, b$ and τ, and $\mu > 0$. As noted in Ref. [7], these results are somewhat sensitive to the various input parameters M_{SUSY}, A_i and $sgn(\mu)$ that enter the third generation sfermion mass matrices (which in turn affect the Higgs boson masses via radiative corrections). We show the current constraints from LEP Higgs searches, along with the ultimate reach of LEP2 for SUSY Higgs bosons, which should cover the low $\tan\beta$ region of parameter space. With 5 fb^{-1} of integrated luminosity, the Fermilab Tevatron experiments should be able to probe nearly the entire parameter space at the 95% CL. (Experiments will probe the region to the right of the h contour and within the H contour.) This would leave a small window of non-observability around $m_A \sim 110$ GeV; this window is, however, filled in at 20 fb^{-1}. The region where a 5σ h signal at 20 fb^{-1} is seeable is also shown below the correspondingly labelled contour.

The corresponding results for the mSUGRA model are shown in Figs. 2 and 3 for $\tan\beta = 2$ and for $\mu < 0$ and $\mu > 0$. The TH region is excluded either due to a lack of appropriate electroweak symmetry breaking, or because the lightest neutralino is not the lightest SUSY particle (LSP). The EX region is excluded by the negative results from LEP2 searches for chargino pair production, which require $m_{W_L} > 85$ GeV. The ultimate reach of the LEP2 experiments is to cover the entire region of the parameter planes shown. Likewise, Fermilab Tevatron experiments should be able to explore the entire plane shown at 95% CL with 2 fb^{-1} or at 5σ with 20 fb^{-1}. In addition, in the lower left corner of Fig. 2, h production can be seen at 5σ with 5 fb^{-1}.

The corresponding mSUGRA plots for $\tan\beta = 10$ are shown in Figs. 4 and 5. The light Higgs boson is typically heavier at large $\tan\beta$ than at small, so the ultimate reach of LEP2 is much more limited in this case. However, Fermilab Tevatron experiments should be able to probe the entire plane shown at 95% CL with 5 fb^{-1} of data. The Tevatron discovery potential at the 5σ level is much more limited.

Finally, mSUGRA expectations for $\tan\beta = 35$ are shown in Figs. 6 and 7. In these cases, there is no ultimate reach of LEP2 for Higgs bosons beyond the already existing parameter space bounds. Tevatron experiments can probe nearly the whole plane up to $m_{1/2} \sim 1200 - 1400$ GeV at the 95% CL with 5 fb^{-1} of data, but discovery at the 5σ level will require an integrated luminosity larger than 20 fb^{-1}.
We have also updated our results for the mGMSB model. These are shown in the Λ vs. tanβ plane are shown in Figs. 8 and 9, for $n_5 = 1$ and messenger scale $M = 10^9$ GeV. In these cases, the whole plane can be probed by Tevatron experiments at the 95% CL with 5 fb$^{-1}$ of data. However, the reach of LEP2 and Fermilab Tevatron experiments at the 5σ level is limited to the low tanβ region of the parameter plane shown.

As an extreme case, we show similar results for the mGMSB model with the number of messengers $n_5 = 4$, in Figs. 10 and 11. In these cases, most of the parameter plane can be probed at 95% CL with 5 fb$^{-1}$ of data, except for the regions shown at higher tanβ with $\Lambda \gtrsim 250 - 275$ GeV. These holes can be filled at 95% CL with the higher integrated luminosity value of 20 fb$^{-1}$.

In summary, luminosity upgrades of the Tevatron collider may provide tantalizing indirect evidence for supersymmetry via signals for a Higgs boson. The nonobservation of any signal will essentially exclude a wide class of SUSY models at the 95% CL. Furthermore these experiments may provide tantalizing indication for the existence of a light Higgs boson, though definitive evidence at the 5σ level may require an integrated luminosity beyond 20 fb$^{-1}$ that is currently envisioned for future upgrades.

References

[5] See talk presented by John Conway at Summary Meeting of the Fermilab Run 2 workshop.

Figure 1: Regions of m_A vs. $\tan \beta$ plane of the MSSM accessible to Higgs searches at the Fermilab Tevatron collider and CERN LEP2. We take $M_{SUSY} = 1$ TeV, $A_t = 0$ and $m_t = 175$ GeV.
Figure 2: Regions of mSUGRA model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $A_0 = 0$, $\tan \beta = 2$ and $\mu < 0$.

\[TH \]

95% C.L. h at 2 fb^{-1}

5σ h at 20 fb^{-1}

LEP2 ultimate

5σ h at 5 fb^{-1}

EX

\[m_0 (GeV) \]
\[m_{1/2} (GeV) \]
Figure 3: Regions of mSUGRA model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $A_0 = 0$, $\tan \beta = 2$ and $\mu > 0$.
Figure 4: Regions of mSUGRA model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $A_0 = 0$, $\tan \beta = 10$ and $\mu < 0$.

\begin{itemize}
\item $\mu < 0$
\item $\tan \beta = 10$
\item $A_0 = 0$
\item $m_{\chi} = 175$ GeV
\end{itemize}
Figure 5: Regions of mSUGRA model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175 \text{ GeV}$, $A_0 = 0$, $\tan \beta = 10$ and $\mu > 0$.

- $\mu > 0$
- $\tan \beta = 10$
- $A_0 = 0$
- $m_0 = 175 \text{ GeV}$

95% C.L. h at 5 fb$^{-1}$

5σ h at 20 fb$^{-1}$

EX
Figure 6: Regions of mSUGRA model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $A_0 = 0$, $\tan \beta = 35$ and $\mu < 0$.
Figure 7: Regions of mSUGRA model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $A_0 = 0$, $\tan \beta = 35$ and $\mu > 0$.

\begin{itemize}
 \item $\mu > 0$
 \item $\tan \beta = 35$
 \item $A_0 = 0$
 \item $m_{\chi} = 175$ GeV
\end{itemize}
Figure 8: Regions of mGMSB model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $M = 10^6$ GeV, $n_5 = 1$ and $\mu < 0$.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu < 0$</td>
<td></td>
</tr>
<tr>
<td>$M = 10^6$ GeV</td>
<td></td>
</tr>
<tr>
<td>$n_5 = 1$</td>
<td></td>
</tr>
<tr>
<td>$m_i = 175$ GeV</td>
<td></td>
</tr>
<tr>
<td>$C_{\text{Grav}} = 1$</td>
<td></td>
</tr>
</tbody>
</table>

95% C.L. h at 5 fb$^{-1}$

5σ h at 20 fb$^{-1}$

LEP2 ultimate, 95% C.L. h at 2 fb$^{-1}$
Figure 9: Regions of mGMSB model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $M = 10^6$ GeV, $n_5 = 1$ and $\mu > 0$.

\[\mu > 0 \]
\[M = 10^6 \text{ GeV} \]
\[n_5 = 1 \]
\[m_t = 175 \text{ GeV} \]
\[C_{Grav} = 1 \]
Figure 10: Regions of mGMSB model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{\text{top}} = 175$ GeV, $M = 10^6$ GeV, $n_5 = 4$ and $\mu < 0$.
Figure 11: Regions of mGMSB model parameter space accessible to current and future Higgs boson searches at LEP2 and the Fermilab Tevatron. We take $m_{top} = 175$ GeV, $M = 10^6$ GeV, $n_5 = 4$ and $\mu > 0$.