Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

PDF Version Also Available for Download.

Description

Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the ... continued below

Physical Description

1500 Kilobytes pages

Creation Information

Leseur, D R; Sherby, O D & Syn, C K July 1, 1999.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 18 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

Physical Description

1500 Kilobytes pages

Source

  • NATO Advanced Research Workshop, Investigations and Applications of Severe Plastic Deformation, Moscow (RU), 08/02/1999--08/07/1999

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: UCRL-JC-133137
  • Report No.: GJ0902000
  • Report No.: 96-ERD-026
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 12731
  • Archival Resource Key: ark:/67531/metadc625528

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • July 1, 1999

Added to The UNT Digital Library

  • June 16, 2015, 7:43 a.m.

Description Last Updated

  • May 6, 2016, 3:20 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 18

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Leseur, D R; Sherby, O D & Syn, C K. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire, article, July 1, 1999; California. (digital.library.unt.edu/ark:/67531/metadc625528/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.